

About	the	Author
Dr.	Simon	Monk	has	a	bachelor’s	degree	in	cybernetics	and	computer	science
and	a	Ph.D.	in	software	engineering.	He	is	now	a	full-time	writer	and	has
authored	numerous	books,	including	Programming	Arduino,	30	Arduino	Projects
for	the	Evil	Genius,	Hacking	Electronics,	and	Fritzing	for	Inventors.	Dr.	Monk
also	runs	the	website	MonkMakes.com,	which	features	his	own	products.	You
can	follow	him	on	Twitter,	where	he	is	@simonmonk2.

Copyright	©	2016,	2013	by	McGraw-Hill	Education.	All	rights	reserved.	Except
as	permitted	under	the	United	States	Copyright	Act	of	1976,	no	part	of	this
publication	may	be	reproduced	or	distributed	in	any	form	or	by	any	means,	or
stored	in	a	database	or	retrieval	system,	without	the	prior	written	permission	of
the	publisher,	with	the	exception	that	the	program	listings	may	be	entered,
stored,	and	executed	in	a	computer	system,	but	they	may	not	be	reproduced	for
publication.

ISBN:	978-1-25-958741-2
MHID:							1-25-958741-X

The	material	in	this	eBook	also	appears	in	the	print	version	of	this	title:	ISBN:
978-1-25-958740-5,	MHID:	1-25-958740-1.

eBook	conversion	by	codeMantra
Version	1.0

All	trademarks	are	trademarks	of	their	respective	owners.	Rather	than	put	a
trademark	symbol	after	every	occurrence	of	a	trademarked	name,	we	use	names
in	an	editorial	fashion	only,	and	to	the	benefit	of	the	trademark	owner,	with	no
intention	of	infringement	of	the	trademark.	Where	such	designations	appear	in
this	book,	they	have	been	printed	with	initial	caps.

McGraw-Hill	Education	eBooks	are	available	at	special	quantity	discounts	to	use
as	premiums	and	sales	promotions	or	for	use	in	corporate	training	programs.	To
contact	a	representative,	please	visit	the	Contact	Us	page	at
www.mhprofessional.com.

McGraw-Hill	Education,	the	McGraw-Hill	Education	logo,	TAB,	and	related
trade	dress	are	trademarks	or	registered	trademarks	of	McGraw-Hill	Education
and/or	its	affiliates	in	the	United	States	and	other	countries	and	may	not	be	used
without	written	permission.	All	other	trademarks	are	the	property	of	their
respective	owners.	McGraw-Hill	Education	is	not	associated	with	any	product	or
vendor	mentioned	in	this	book.

Raspberry	Pi	is	a	trademark	of	the	Raspberry	Pi	Foundation.

Information	has	been	obtained	by	McGraw-Hill	Education	from	sources
believed	to	be	reliable.	However,	because	of	the	possibility	of	human	or
mechanical	error	by	our	sources,	McGraw-Hill	Education,	or	others,	McGraw-
Hill	Education	does	not	guarantee	the	accuracy,	adequacy,	or	completeness	of
any	information	and	is	not	responsible	for	any	errors	or	omissions	or	the	results
obtained	from	the	use	of	such	information.

http://www.mhprofessional.com

TERMS	OF	USE

This	is	a	copyrighted	work	and	McGraw-Hill	Education	and	its	licensors	reserve
all	rights	in	and	to	the	work.	Use	of	this	work	is	subject	to	these	terms.	Except	as
permitted	under	the	Copyright	Act	of	1976	and	the	right	to	store	and	retrieve	one
copy	of	the	work,	you	may	not	decompile,	disassemble,	reverse	engineer,
reproduce,	modify,	create	derivative	works	based	upon,	transmit,	distribute,
disseminate,	sell,	publish	or	sublicense	the	work	or	any	part	of	it	without
McGraw-Hill	Education’s	prior	consent.	You	may	use	the	work	for	your	own
noncommercial	and	personal	use;	any	other	use	of	the	work	is	strictly	prohibited.
Your	right	to	use	the	work	may	be	terminated	if	you	fail	to	comply	with	these
terms.

THE	WORK	IS	PROVIDED	“AS	IS.”	McGRAW-HILL	EDUCATION	AND
ITS	LICENSORS	MAKE	NO	GUARANTEES	OR	WARRANTIES	AS	TO
THE	ACCURACY,	ADEQUACY	OR	COMPLETENESS	OF	OR	RESULTS
TO	BE	OBTAINED	FROM	USING	THE	WORK,	INCLUDING	ANY
INFORMATION	THAT	CAN	BE	ACCESSED	THROUGH	THE	WORK	VIA
HYPERLINK	OR	OTHERWISE,	AND	EXPRESSLY	DISCLAIM	ANY
WARRANTY,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED
TO	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	OR	FITNESS	FOR
A	PARTICULAR	PURPOSE.	McGraw-Hill	Education	and	its	licensors	do	not
warrant	or	guarantee	that	the	functions	contained	in	the	work	will	meet	your
requirements	or	that	its	operation	will	be	uninterrupted	or	error	free.	Neither
McGraw-Hill	Education	nor	its	licensors	shall	be	liable	to	you	or	anyone	else	for
any	inaccuracy,	error	or	omission,	regardless	of	cause,	in	the	work	or	for	any
damages	resulting	therefrom.	McGraw-Hill	Education	has	no	responsibility	for
the	content	of	any	information	accessed	through	the	work.	Under	no
circumstances	shall	McGraw-Hill	Education	and/or	its	licensors	be	liable	for	any
indirect,	incidental,	special,	punitive,	consequential	or	similar	damages	that
result	from	the	use	of	or	inability	to	use	the	work,	even	if	any	of	them	has	been
advised	of	the	possibility	of	such	damages.	This	limitation	of	liability	shall	apply
to	any	claim	or	cause	whatsoever	whether	such	claim	or	cause	arises	in	contract,
tort	or	otherwise.

To	my	brothers,	Andrew	and	Tim	Monk,	for	their	love	and	wisdom.

CONTENTS	AT	A	GLANCE

1	Introduction

2	Getting	Started

3	Python	Basics

4	Strings,	Lists,	and	Dictionaries

5	Modules,	Classes,	and	Methods

6	Files	and	the	Internet

7	Graphical	User	Interfaces

8	Games	Programming

9	Interfacing	Hardware

10	LED	Fader	Project

11	Prototyping	Project	(Clock)

12	Raspberry	Pi	Robot

13	What	Next

Index

CONTENTS

Preface
Acknowledgments
Introduction

1	Introduction
What	Is	the	Raspberry	Pi?
What	Can	You	Do	with	a	Raspberry	Pi?
A	Tour	of	the	Raspberry	Pi
Setting	Up	Your	Raspberry	Pi

Buying	What	You	Need
Connecting	Everything	Together

Booting	Up
Summary

2	Getting	Started
Linux
The	Desktop
The	Internet
The	Command	Line

Navigating	with	the	Terminal
sudo

Applications
Internet	Resources
Summary

3	Python	Basics

IDLE
Python	Versions
Python	Shell
Editor

Numbers
Variables
For	Loops
Simulating	Dice
If

Comparisons
Being	Logical
Else

While
Summary

4	Strings,	Lists,	and	Dictionaries
String	Theory
Lists
Functions
Hangman
Dictionaries
Tuples

Multiple	Assignment
Multiple	Return	Values

Exceptions
Summary	of	Functions

Numbers
Strings
Lists
Dictionaries
Type	Conversions

Summary

5	Modules,	Classes,	and	Methods
Modules

Using	Modules
Useful	Python	Libraries

Object	Orientation
Defining	Classes
Inheritance
Summary

6	Files	and	the	Internet
Files

Reading	Files
Reading	Big	Files
Writing	Files
The	File	System

Pickling
Internet
Summary

7	Graphical	User	Interfaces
Tkinter
Hello	World
Temperature	Converter
Other	GUI	Widgets

Checkbutton
Listbox
Spinbox
Layouts
Scrollbar

Dialogs

Color	Chooser
File	Chooser

Menus
The	Canvas
Summary

8	Games	Programming
What	Is	Pygame?
Coordinates
Hello	Pygame
A	Raspberry	Game

Following	the	Mouse
One	Raspberry
Catch	Detection	and	Scoring
Timing
Lots	of	Raspberries

Summary

9	Interfacing	Hardware
GPIO	Pin	Connections

Pin	Functions
Serial	Interface	Pins
Power	Pins
Hat	Pins

Breadboarding	with	Jumper	Wires
Digital	Outputs

Step	1.	Put	the	Resistor	on	the	Breadboard
Step	2.	Put	the	LED	on	the	Breadboard
Step	3.	Connect	the	Breadboard	to	the	GPIO	Pins

Analog	Outputs
Digital	Inputs
Analog	Inputs

Hardware
The	Software

Breadboarding	with	the	Pi	Cobbler
Prototyping	Boards

Perma-Proto
Perma-Proto	Pi	HAT

Other	Boards	and	HATs
Arduino	and	the	Pi

Arduino	and	Pi	Talk
Summary

10	LED	Fader	Project
What	You	Need
Hardware	Assembly
Software
Summary

11	Prototyping	Project	(Clock)
What	You	Need
Hardware	Assembly
Software
Phase	Two
Summary

12	Raspberry	Pi	Robot
What	You	Need
Project	1.	Autonomous	Rover

Hardware
Software

Project	2.	Web-Controlled	Rover
Software

Summary

13	What	Next
Linux	Resources
Python	Resources
Raspberry	Pi	Resources
Other	Programming	Languages

Scratch
C

Applications	and	Projects
Media	Center	(Raspbmc)
Home	Automation

Summary

Index

PREFACE

The	Raspberry	Pi	is	rapidly	becoming	a	worldwide	phenomenon.	People	are
waking	up	to	the	possibility	of	a	$35	(U.S.)	computer	that	can	be	put	to	use	in	all
sorts	of	settings—from	a	desktop	workstation	to	a	media	center	to	a	controller
for	a	home	automation	system.

This	book	explains	in	simple	terms,	to	both	nonprogrammers	and
programmers	new	to	the	Raspberry	Pi,	how	to	start	writing	programs	for	the	Pi
in	the	popular	Python	programming	language.	It	then	goes	on	to	give	you	the
basics	of	creating	graphical	user	interfaces	and	simple	games	using	the	pygame
module.

The	software	in	the	book	mostly	uses	Python	3,	with	the	occasional	use	of
Python	2	where	necessary	for	module	availability.	The	Raspbian	Wheezy
distribution	recommended	by	the	Raspberry	Pi	Foundation	is	used	throughout
the	book.

The	book	starts	with	an	introduction	to	the	Raspberry	Pi	and	covers	the	topics
of	buying	the	necessary	accessories	and	setting	everything	up.	You	then	get	an
introduction	to	programming	while	you	gradually	work	your	way	through	the
next	few	chapters.	Concepts	are	illustrated	with	sample	applications	that	will	get
you	started	programming	your	Raspberry	Pi.

Four	chapters	are	devoted	to	programming	and	using	the	Raspberry	Pi’s
GPIO	connector,	which	allows	the	device	to	be	attached	to	external	electronics.
These	chapters	include	three	sample	projects—a	LED	lighting	controller,	a	LED
clock,	and	a	Raspberry	Pi–controlled	robot,	complete	with	ultrasonic
rangefinder.

Here	are	the	key	topics	covered	in	the	book:

	Python	numbers,	variables,	and	other	basic	concepts	 	Strings,	lists,
dictionaries,	and	other	Python	data	structures	 	Modules	and	object
orientation

	Files	and	the	Internet

	Graphical	user	interfaces	using	Tkinter	 	Game	programming	using
pygame	 	Interfacing	with	hardware	via	the	GPIO	connector	 	Sample

hardware	projects

All	the	code	listings	in	the	book	are	available	for	download	from	the	book’s
website	at	www.raspberrypibook.com,	where	you	can	also	find	other	useful
material	relating	to	the	book,	including	errata.

Simon	Monk

http://www.raspberrypibook.com

ACKNOWLEDGMENTS

As	always,	I	thank	Linda	for	her	patience	and	support.
At	TAB/McGraw-Hill	and	MPS	Limited,	my	thanks	go	out	to	Michael

McCabe,	Dheeraj	Chahal,	and	their	colleagues.	As	always,	it	was	a	pleasure
working	with	such	a	great	team.

Thanks	also	to	Brian	MacKenzie	and	Karl	Cookson	for	letting	me	know
about	a	few	errors	they	found	in	the	first	edition.

INTRODUCTION

Since	the	first	Raspberry	Pi	model	B	revision	1	was	released	in	2012,	there
have	been	a	number	of	upgrades	to	the	original	hardware.	These	new	versions	of
the	Raspberry	Pi	have	been	largely	compatible	with	the	original	device,	but	there
are	a	few	changes	to	both	the	hardware	and	the	standard	Raspbian	operating
distribution	that	warrant	a	new	edition	of	this	book.

Much	of	this	book	is	concerned	with	learning	Python,	the	most	common
programming	language	used	with	the	Raspberry	Pi,	and	this	remains	largely
unchanged.	However,	Chapters	9	to	11,	which	deal	with	hardware,	have	changed
somewhat,	and	this	edition	adds	a	new	project	chapter	demonstrating	the	use	of	a
Tkinter	user	interface	to	control	the	color	of	an	RGB	LED.

In	most	cases	anything	said	in	the	book	about	the	Raspberry	Pi	applies
equally	to	the	Raspberry	Pi	2,	so	for	simplicity	I	will	just	use	the	term	Raspberry
Pi	to	refer	to	both	the	Pi	and	the	Pi	2	unless	the	situation	needs	a	distinction	to	be
drawn.

1
Introduction

The	Raspberry	Pi	went	on	general	sale	at	the	end	of	February	2012	and
immediately	crashed	the	websites	of	the	suppliers	chosen	to	take	orders	for	it.

Since	then	a	number	of	new	models	culminating	in	the	Raspberry	Pi	2	have
been	released.	So	what	was	so	special	about	this	little	device	and	why	has	it
created	so	much	interest?

	

What	Is	the	Raspberry	Pi?
The	Raspberry	Pi	2,	shown	in	Figure	1-1,	is	a	computer	that	runs	the	Linux
operating	system.	It	has	USB	sockets	you	can	plug	a	keyboard	and	mouse	into
and	HDMI	(High-Definition	Multimedia	Interface)	video	output	you	can	connect
a	TV	or	monitor	into.	Many	monitors	only	have	a	VGA	connector,	and
Raspberry	Pi	will	not	work	with	this.	However,	if	your	monitor	has	a	DVI
connector,	cheap	HDMI-to-DVI	adapters	are	available.

Figure	1-1	The	Raspberry	Pi.

When	Raspberry	Pi	boots	up,	you	get	the	Linux	desktop	shown	in	Figure	1-2.
This	really	is	a	proper	computer,	able	to	run	an	office	suite,	video	playback
capabilities,	games,	and	the	lot.	It’s	not	Microsoft	Windows;	instead,	it	is
Windows’	open	source	rival	Linux	(Debian	Linux),	and	the	windowing
environment	is	called	LXDE.

Figure	1-2	The	Raspberry	Pi	desktop.

It’s	small	(the	size	of	a	credit	card)	and	extremely	affordable	(starting	at	$25).
Part	of	the	reason	for	this	low	cost	is	that	some	components	are	not	included
with	the	board	or	are	optional	extras.	For	instance,	it	does	not	come	in	a	case	to
protect	it—it	is	just	a	bare	board.	Nor	does	it	come	with	a	power	supply,	so	you
will	need	to	find	yourself	a	5V	micro-USB	power	supply,	much	like	you	would
use	to	charge	a	phone	(but	probably	with	higher	power).	A	USB	power	supply
and	a	micro-USB	lead	are	often	used	for	this.

	

What	Can	You	Do	with	a	Raspberry	Pi?
You	can	do	pretty	much	anything	on	a	Raspberry	Pi	that	you	can	on	any	other
Linux	desktop	computer,	with	a	few	limitations.	The	Raspberry	Pi	2	uses	a
micro-SD	card	in	place	of	a	hard	disk.	The	older	Raspberry	Pi	models	A	and	B
use	a	full-size	SD	card,	although	you	can	plug	in	a	USB	hard	disk.	You	can	edit
office	documents,	browse	the	Internet,	and	play	games	(even	games	with	quite
intensive	graphics,	such	as	Quake).

The	low	price	of	the	Raspberry	Pi	means	that	it	is	also	a	prime	candidate	for
use	as	a	media	center.	It	can	play	video,	and	you	can	just	about	power	it	from	the
USB	port	you	find	on	many	TVs.

	

A	Tour	of	the	Raspberry	Pi
Figure	1-3	labels	the	various	parts	of	a	Raspberry	Pi.	This	figure	takes	you	on	a
tour	of	the	Raspberry	Pi	2,	which	differs	from	the	other	current	Raspberry	Pi
version,	the	Model	A+,	by	virtue	of	having	a	RJ-45	LAN	connector,	allowing	it
to	be	connected	to	a	network.

Figure	1-3	The	anatomy	of	a	Raspberry	Pi	2.

The	RJ-45	Ethernet	connector	is	shown	in	the	bottom-right	corner	of	the
figure.	If	your	home	hub	is	handy,	you	can	plug	your	Raspberry	Pi	directly	into
your	local	network.	While	we	are	on	the	subject,	it	is	worth	noting	that	the
Raspberry	Pi	does	not	have	Wi-Fi	built	in.	For	wireless	networking,	you	will
need	to	plug	in	a	USB	wireless	adapter.

Immediately	above	the	Ethernet	socket	you’ll	find	two	pairs	of	USB	sockets.
You	can	plug	a	keyboard,	mouse,	or	external	hard	disks	into	the	board.

In	the	bottom-center	of	the	figure	you’ll	find	an	audio	socket	that	provides	a
stereo	analog	signal	for	headphones	or	powered	speakers.	This	socket	also
provides	a	composite	video	signal.	The	HDMI	connector	is	also	sound	capable.

You	are	unlikely	to	use	the	composite	video	feature	of	the	audio/AV	socket
connector	unless	you	are	using	your	Raspberry	Pi	with	an	older	TV.	You	are	far
more	likely	to	use	the	HDMI	connector.	HDMI	is	higher	quality,	includes	sound,
and	can	be	connected	to	DVI-equipped	monitors	with	a	cheap	adapter.

At	the	top	of	the	Pi	2	are	two	rows	of	pins.	These	are	called	GPIO	(General
Purpose	Input/Output)	pins,	and	they	allow	the	Raspberry	Pi	to	be	connected	to
custom	electronics.	Users	of	the	Arduino	and	other	microcontroller	boards	will
be	used	to	the	idea	of	GPIO	pins.	Later,	in	Chapter	12,	we	will	use	these	pins	to
enable	our	Raspberry	Pi	to	be	the	“brain”	of	a	little	roving	robot	by	controlling
its	motors.	In	Chapter	11,	we	will	use	the	Raspberry	Pi	to	make	an	LED	clock.

The	Raspberry	Pi	2	has	a	micro-SD	card	slot	underneath	the	board.	This	SD
card	needs	to	be	at	least	2	to	4GB	in	size.	It	contains	the	computer’s	operating
system	as	well	as	the	file	system	in	which	you	can	store	any	documents	you
create.	The	SD	card	is	an	optional	extra	feature	when	buying	your	Raspberry	Pi.
Preparing	your	own	SD	card	is	a	little	unusual,	and	suppliers	such	as	SK	Pang,
Farnell,	and	RS	Components	all	sell	already-prepared	micro-SD	cards.	Because
no	disk	is	built	into	your	Raspberry	Pi,	this	card	is	effectively	your	computer,	so
you	could	take	it	out	and	put	it	in	a	different	Raspberry	Pi	and	all	your	stuff
would	be	there.

Below	the	micro-SD	card	is	a	micro-USB	socket.	This	is	only	used	to	supply
power	to	the	Raspberry	Pi.	Therefore,	you	will	need	a	power	supply	with	a
micro-USB	connector	on	the	end.	This	is	the	same	type	of	connector	used	by
many	mobile	phones,	including	most	Android	phones.	Do,	however,	check	that	it
is	capable	of	supplying	at	least	700mA;	otherwise,	your	Raspberry	Pi	may
behave	erratically.

For	those	interested	in	technical	specs,	the	big	square	chip	in	the	center	of	the
board	is	where	all	the	action	occurs.	This	is	Broadcom’s	“System	on	a	Chip”	and
includes	1GB	of	memory	as	well	as	the	graphics	and	general-purpose	processors
that	drive	the	Raspberry	Pi	2.

You	may	also	have	noticed	flat	cable	connectors	on	the	Pi	2.	The	connector
on	the	far	left	is	for	an	LCD	display	and	the	connector	bottom-center	is	for	the
special	Raspberry	Pi	Camera	Module.

	

Setting	Up	Your	Raspberry	Pi
You	can	make	your	life	easier	by	buying	a	prepared	micro-SD	card	and	power
supply	when	you	buy	your	Raspberry	Pi,	and	for	that	matter	you	may	as	well	get
a	USB	keyboard	and	mouse	(unless	you	have	them	lurking	around	the	house
somewhere).	Let’s	start	the	setup	process	by	looking	at	what	you	will	need	and
where	to	get	it	from.

Buying	What	You	Need
Table	1-1	shows	you	what	you	will	need	for	a	fully	functioning	Raspberry	Pi	2
system.	The	Raspberry	Pi	itself	is	sold	through	two	worldwide	distributors	based
in	the	UK:	Farnell	(and	the	related	U.S.	company	Newark)	and	RS	Components,
as	well	as	many	online	hobby	electronics	companies	like	Adafruit	and	Sparkfun.

Table	1-1	A	Raspberry	Pi	Kit

Power	Supply
Figure	1-4	shows	a	typical	USB	power	supply	and	USB-A-to-micro-USB	lead.

Figure	1-4	USB	power	supply.

You	may	be	able	to	use	a	power	supply	from	an	old	phone	or	the	like,	as	long
as	it	is	5V	and	can	supply	enough	current.	It	is	important	not	to	overload	the
power	supply	because	it	could	get	hot	and	fail	(or	even	be	a	fire	hazard).
Therefore,	the	power	supply	should	be	able	to	supply	at	least	500mA,	but	1A
would	give	the	Raspberry	Pi	a	little	extra	when	it	comes	to	powering	the	devices
attached	to	its	USB	ports.	If	you	have	an	older	model	B	Pi,	then	you	will	need	a
700mA	power	supply.

If	you	look	closely	at	the	specs	written	on	the	power	supply,	you	should	be
able	to	determine	its	current	supply	capabilities.	Sometimes	its	power-handling
capabilities	will	be	expressed	in	watts	(W);	if	that’s	the	case,	it	should	be	at	least
3W.	If	it	indicates	5W,	this	is	equivalent	to	1A.

Keyboard	and	Mouse
The	Raspberry	Pi	will	work	with	pretty	much	any	USB	keyboard	and	mouse.
You	can	also	use	most	wireless	USB	keyboards	and	mice—the	kind	that	come
with	their	own	dongle	to	plug	into	the	USB	port.	This	is	quite	a	good	idea,
especially	if	they	come	as	a	pair.	That	way,	you	are	only	using	up	one	of	the

USB	ports.	This	will	also	come	in	quite	handy	in	Chapter	11	when	we	use	a
wireless	keyboard	to	control	our	Raspberry	Pi–based	robot.

Display
Including	an	RCA	video	output	on	the	Raspberry	Pi	is,	frankly,	a	bit	puzzling
because	most	people	are	going	to	go	straight	to	the	more	modern	HDMI
connector.	A	low-cost	22-inch	LCD	TV	will	make	a	perfectly	adequate	display
for	the	Pi.	Indeed,	you	may	just	decide	to	use	the	main	family	TV,	just	plugging
the	Pi	into	the	TV	when	you	need	it.

If	you	have	a	computer	monitor	with	just	a	VGA	connector,	you	are	not	going
to	be	able	to	use	it	without	an	expensive	converter	box.	On	the	other	hand,	if
your	monitor	has	a	DVI	connector,	an	inexpensive	adapter	will	do	the	job	well.

Micro-SD	Card
You	can	use	your	own	micro-SD	card	in	the	Raspberry	Pi,	but	it	will	need	to	be
prepared	with	the	NOOBS	(New	Out	of	the	Box	Software)	installer.	This	is	a
little	fiddly,	so	you	may	just	want	to	spend	a	dollar	or	two	more	and	buy	a	micro-
SD	card	that	is	already	prepared	and	ready	to	go.

You	can	also	find	people	at	Raspberry	Pi	meet-ups	who	will	be	happy	to	help
you	prepare	an	micro-SD	card.	Look	around	on	the	Internet	to	find	suppliers
who	sell	prepared	cards,	with	NOOBS.	If	you	indeed	want	to	“roll	your	own”
SD	card,	refer	to	the	instructions	found	at	www.raspberrypi.org/downloads.

To	prepare	your	own	card,	you	must	have	another	computer	with	a	SD	card
reader.

A	big	advantage	of	making	your	own	SD	card	is	that	you	can	actually	choose
from	a	range	of	operating	system	distributions.	Table	1-2	shows	the	most	popular
ones	available	at	the	time	of	writing.	Check	on	the	Raspberry	Pi	Foundation’s
website	for	newer	distributions.

http://www.raspberrypi.org/downloads

Table	1-2	Raspberry	Pi	Linux	Distributions

Of	course,	nothing	is	stopping	you	from	buying	a	few	micro-SD	cards	and
trying	out	the	different	distributions	to	see	which	you	prefer.	However,	if	you	are
a	Linux	beginner,	you	should	stick	to	the	NOOBS	installer	and	use	the	standard
Raspbian	distribution.

Case
The	Raspberry	Pi	does	not	come	in	any	kind	of	enclosure.	This	helps	to	keep	the
price	down,	but	also	makes	it	rather	vulnerable	to	breakage.	Therefore,	it	is	a
good	idea	to	either	make	or	buy	a	case	as	soon	as	you	can.	Figure	1-5	shows	a
few	of	the	ready-made	cases	currently	available.

Figure	1-5	Commercial	Raspberry	Pi	cases.

The	cases	shown	are	supplied	by	(a)	Adafruit	(www.adafruit.com),	(b)	SK
Pang	(www.skpang.co.uk/),	and	(c)	ModMyPi	(www.modmypi.com).	The	case
you	choose	will	depend	on	what	you	plan	to	do	with	your	Raspberry	Pi.	If	you
have	access	to	a	3D	printer,	you	can	also	use	the	following	open	source	designs:

http://www.adafruit.com
http://www.skpang.co.uk/
http://www.modmypi.com

	www.thingiverse.com/thing:685074

	www.thingiverse.com/thing:665042

You	can	also	find	a	folded	card	design	called	the	Raspberry	Punnet	at
www.raspberrypi.org/archives/1310.

People	are	having	a	lot	of	fun	building	their	Raspberry	Pi	into	all	sorts	of
repurposed	containers,	such	as	vintage	computers	and	games	consoles.	One
could	even	build	a	case	using	Legos.	My	first	case	for	a	Raspberry	Pi	was	made
by	cutting	holes	in	a	plastic	container	that	used	to	hold	business	cards	(see
Figure	1-6).

Figure	1-6	A	homemade	Raspberry	Pi	case.

Wi-Fi
None	of	the	Raspberry	Pi	models	has	support	for	Wi-Fi.	Therefore,	to	wirelessly
connect	your	Raspberry	Pi	to	the	network,	you	have	just	two	options.	The	first	is
to	use	a	USB	wireless	adapter	that	just	plugs	into	a	USB	socket	(see	Figure	1-7).
To	configure	Wi-Fi	you	will	need	to	use	the	Wi-Fi	Configuration	tool	that	you
will	find	in	the	Preference	menu	once	you	have	your	Pi	up	and	running.

http://www.thingiverse.com/thing:685074
http://www.thingiverse.com/thing:665042
http://www.raspberrypi.org/archives/1310

Figure	1-7	Wi-Fi	adapter.

The	Wi-Fi	adapters	in	the	list	referenced	in	Table	1-1	are	purported	to	work
with	the	Raspberry	Pi.	However,	there	are	sometimes	problems	with	Wi-Fi
drivers,	so	be	sure	to	check	the	Raspberry	Pi	forum	and	wiki	for	up-to-date
information	on	compatible	devices.

The	second	option	for	Wi-Fi	is	to	use	a	Wi-Fi	bridge	with	a	Model	B
Raspberry	Pi.	These	devices	are	usually	USB	powered	and	plug	into	the	Ethernet
socket	on	the	Raspberry	Pi.	They	are	often	used	by	the	owners	of	game	consoles
that	have	an	Ethernet	socket	but	no	Wi-Fi.	This	setup	has	the	advantage	in	that
the	Raspberry	Pi	does	not	require	any	special	configuration.

USB	Hub
If	you	have	one	of	the	original	Raspberry	Pi	model	B,	you	will	have	just	two
USB	ports	available;	you	will	rapidly	run	out	of	sockets.	The	way	to	obtain	more
USB	ports	is	to	use	a	USB	hub	(see	Figure	1-8).

Figure	1-8	A	USB	hub.

These	hubs	are	available	with	anywhere	from	three	to	eight	ports.	Make	sure
that	the	port	supports	USB	2.	It	is	also	a	good	idea	to	use	a	“powered”	USB	hub
so	that	you	do	not	draw	too	much	power	from	the	Raspberry	Pi.

Connecting	Everything	Together
Now	that	you	have	all	the	parts	you	need,	let’s	get	it	all	plugged	together	and
boot	your	Raspberry	Pi	for	the	first	time.	Figure	1-9	shows	how	everything
needs	to	be	connected.	You	may	also	want	to	use	a	Wi-Fi	adapter	in	one	of	the
USB	ports.

Figure	1-9	A	Raspberry	Pi	system.

Insert	the	micro-SD	card	with	NOOBS,	connect	the	keyboard,	mouse,	and
monitor	to	the	Pi,	attach	the	power	supply,	and	you	are	ready	to	go.

	

Booting	Up
To	make	sure	that	your	installer	will	get	the	latest	version	of	Raspbian,	you
should	connect	your	Raspberry	Pi	to	your	network	using	an	Ethernet	cable
during	the	installation	process.

When	the	Raspberry	Pi	boots	into	the	NOOBS	Installer,	you	will	be	presented
with	a	list	of	operating	systems	(Figure	1-10).	Click	the	checkbox	next	to	the
first	option	(Raspbian	[RECOMMENDED])	and	then	click	on	the	“Install”
button.

Figure	1-10	Selecting	an	operating	system	to	install	with	NOOBS.

After	a	warning	that	everything	on	the	SD	card	will	be	erased,	the	installation
will	begin.	During	this	process,	which	takes	quite	a	while,	the	installer	will	show
a	series	of	informative	messages	(Figure	1-11).

Figure	1-11	Installing	Raspbian.

When	the	installer	has	finished	installing	Raspbian,	an	alert	will	pop	up	to	tell
you	that	installation	has	finished.	Your	Raspberry	Pi	will	then	reboot	and	then
automatically	run	the	raspi-config	tool	that	lets	you	configure	your	Raspberry	Pi
after	it	boots	for	the	first	time	(Figure	1-12).

Figure	1-12	The	raspi-config	tool.

Select	the	option	“Enable	Boot	to	Desktop/Scratch,”	press	the	ENTER	key
and	then	select	the	option	“Desktop	Log	in	as	user	pi	at	the	graphical	desktop,”
and	press	ENTER	again.	This	will	configure	the	Raspberry	Pi	to	automatically
start	the	windowing	environment	each	time	it	reboots.

Finally,	use	the	right	cursor	key	to	select	“Finish”	in	raspi-config	and	then
press	ENTER.

You	will	be	prompted	to	reboot	and	when	that	is	complete,	you	will	be	booted
up	into	the	desktop	and	ready	for	action.

	

Summary
Now	that	we	have	set	up	our	Raspberry	Pi	and	it	is	ready	to	use,	we	can	start
exploring	some	of	its	features	and	get	a	grip	on	the	basics	of	Linux.

2
Getting	Started

The	Raspberry	Pi	uses	Linux	as	its	operating	system.	This	chapter	introduces
Linux	and	shows	you	how	to	use	the	desktop	and	command	line.

	

Linux
Linux	is	an	open	source	operating	system.	This	software	has	been	written	as	a
community	project	for	those	looking	for	an	alternative	to	the	duopoly	of
Microsoft	Windows	and	Apple	OS	X.	It	is	a	fully	featured	operating	system
based	on	the	same	solid	UNIX	concepts	that	arose	in	the	early	days	of
computing.	It	has	a	loyal	and	helpful	following	and	has	matured	into	an
operating	system	that	is	powerful	and	easy	to	use.

Although	the	operating	system	is	called	Linux,	various	Linux	distributions	(or
distros)	have	been	produced.	These	involve	the	same	basic	operating	system,	but
are	packaged	with	different	bundles	of	applications	or	different	windowing
systems.	Although	many	distros	are	available,	the	one	recommended	by	the
Raspberry	Pi	foundation	is	called	Raspbian.

If	you	are	only	used	to	some	flavor	of	Microsoft	Windows,	expect	to
experience	some	frustration	as	you	get	used	to	a	new	operating	system.	Things
work	a	little	differently	in	Linux.	Almost	anything	you	may	want	to	change
about	Linux	can	be	changed.	The	system	is	open	and	completely	under	your
control.	However,	as	they	say	in	Spiderman,	with	great	power	comes	great
responsibility.	This	means	that	if	you	are	not	careful,	you	could	end	up	breaking
your	operating	system.

	

The	Desktop

At	the	end	of	Chapter	1,	we	had	just	booted	up	our	Raspberry	Pi,	logged	in,	and
started	up	the	windowing	system.	Figure	2-1	serves	to	remind	you	of	what	the
Raspberry	Pi	desktop	looks	like.

Figure	2-1	Raspberry	Pi	desktop.

If	you	are	a	user	of	Windows	or	Mac	computers,	you	will	be	familiar	with	the
concept	of	a	desktop	as	a	folder	within	the	file	system	that	acts	as	a	sort	of
background	to	everything	you	do	on	the	computer.

Clicking	the	left-most	icon	on	the	bar	at	the	top	of	the	screen	will	show	us
some	of	the	applications	and	tools	installed	on	the	Raspberry	Pi	(rather	like	the
Start	menu	in	Microsoft	Windows).	We	are	going	to	start	with	the	File	Manager,
which	can	be	found	under	the	Accessories.

The	File	Manager	is	just	like	the	File	Explorer	in	Windows	or	the	Finder	on	a
Mac.	It	allows	you	to	explore	the	file	system,	copy	and	move	files,	as	well	as
launch	files	that	are	executable	(applications).

When	it	starts,	the	File	Manager	shows	you	the	contents	of	your	home
directory.	You	may	remember	that	when	you	logged	in,	you	gave	your	login
name	as	pi.	The	root	to	your	home	directory	will	be	homepi.	Note	that	like	Mac’s

OS	X,	Linux	uses	slash	(/)	characters	to	separate	the	parts	of	a	directory	name.
Therefore,	/	is	called	the	root	directory	and	home	is	a	directory	that	contains
other	directories,	one	for	each	user.	Our	Raspberry	Pi	is	just	going	to	have	one
user	(called	pi),	so	this	directory	will	only	ever	contain	a	directory	called	pi.	The
current	directory	is	shown	in	the	address	bar	at	the	top,	and	you	can	type	directly
into	it	to	change	the	directory	being	viewed,	or	you	can	use	the	navigation	bar	at
the	side.	The	contents	of	the	directory	homepi	include	just	the	directories
Desktop	and	python_games.

Double-clicking	Desktop	will	open	the	Desktop	directory,	but	this	is	not	of
much	interest	because	it	just	contains	the	shortcuts	on	the	left	side	of	the
desktop.	If	you	open	python_games,	you	will	see	some	games	you	can	try	out,	as
shown	in	Figure	2-2.

Figure	2-2	The	contents	of	python_games,	as	shown	in	File	Manager.

You	shouldn’t	often	need	to	use	any	of	the	file	system	outside	of	your	home
directory.	You	should	keep	all	documents,	music	files,	and	so	on,	housed	within
directories	on	your	home	folder	or	on	an	external	USB	flash	drive.

	

The	Internet
If	you	have	a	home	hub	and	can	normally	plug	in	any	Internet	device	using	an
Ethernet	cable,	you	should	have	no	problem	getting	your	Raspberry	Pi	online.
Your	home	hub	should	automatically	assign	the	Raspberry	Pi	an	IP	address	and
allow	it	to	connect	to	the	network.

The	Raspberry	Pi	comes	with	a	web	browser,	which	you	will	find	under	the
Internet	section	of	your	start	menu.	You	can	check	that	your	connection	is	okay
by	starting	the	web	browser	and	connecting	to	a	website	of	your	choice,	as
shown	in	Figure	2-3.

Figure	2-3	The	Midori	web	browser.

You	do	not	have	to	use	the	official	Raspbery	Pi	browser.	You	can	download
the	faster	and	more	reliable	Chromium	which	is	based	on	the	Google	Chrome.
See	the	instructions	here:	http://elinux.org/RPi_Chromium.

http://elinux.org/RPi_Chromium

	

The	Command	Line
If	you	are	a	Windows	or	Mac	user,	you	may	have	never	used	the	command	line.
If	you	are	a	Linux	user,	on	the	other	hand,	you	almost	certainly	will	have	done
so.	In	fact,	if	you	are	a	Linux	user,	then	about	now	you	will	have	realized	that
you	probably	don’t	need	this	chapter	because	it’s	all	a	bit	basic	for	you.

Although	it	is	possible	to	use	a	Linux	system	completely	via	the	graphical
interface,	in	general	you	will	need	to	type	commands	into	the	command	line.
You	do	this	to	install	new	applications	and	to	configure	the	Raspberry	Pi.

To	open	an	LXTerminal	window,	click	on	the	LXTerminal	icon	(looks	like	a
monitor	with	a	blank	screen).	This	is	a	few	icons	to	the	right	of	the	Raspberry	P
Menu	(see	Figure	2-4).

Figure	2-4	The	LXTerminal	command	line.

Navigating	with	the	Terminal

You	will	find	yourself	using	three	commands	a	lot	when	you	are	using	the
command	line.	The	first	command	is	pwd,	which	is	short	for	print	working
directory	and	shows	you	which	directory	you	are	currently	in.	Therefore,	after
the	$	sign	in	the	terminal	window,	type	pwd	and	press	RETURN,	as	shown	in
Figure	2-5.

Figure	2-5	The	pwd	command.

As	you	can	see,	we	are	currently	in	homepi.	Rather	than	provide	a	screen	shot
for	everything	we	are	going	to	type	into	the	terminal,	I	will	use	the	convention
that	anything	I	want	you	to	type	will	be	prefixed	with	a	$	sign,	like	this:

$pwd

Anything	you	should	see	as	a	response	will	not	have	$	in	front	of	it.
Therefore,	the	whole	process	of	running	the	pwd	command	would	look
something	like	this:

$pwd

homepi

The	next	common	command	we	are	going	to	discuss	is	ls,	which	is	short	for
list	and	shows	us	a	list	of	the	files	and	directories	within	the	working	directory.

Try	the	following:

$ls

Desktop

This	tells	us	that	the	only	thing	in	homepi	is	the	directory	Desktop.
The	final	command	we	are	going	to	cover	for	navigating	around	is	cd	(which

stands	for	change	directory).	This	command	changes	the	current	working
directory.	It	can	change	the	directory	relative	either	to	the	old	working	directory
or	to	a	completely	different	directory	if	you	specify	the	whole	directory,	starting
with	/.	So,	for	example,	the	following	command	will	change	the	current	working
directory	to	homepi/Desktop:

$pwd

homepi

$cd	Desktop

You	could	do	the	same	thing	by	typing	this:

$cd	homepi/Desktop

Note	that	when	entering	a	directory	or	filename,	you	do	not	have	to	type	all	of
it.	Instead,	at	any	time	after	you	have	typed	some	of	the	name,	you	can	press	the
TAB	key.	If	the	filename	is	unique	at	that	point,	it	will	be	automatically
completed	for	you.

sudo
Another	command	that	you	will	probably	use	a	lot	is	sudo	(for	super-user	do).
This	runs	whatever	command	you	type	after	it	as	if	you	were	a	super-user.	You
might	be	wondering	why,	as	the	sole	user	of	this	computer,	you	are	not
automatically	a	super-user.	The	answer	is	that,	by	default,	your	regular	user
account	(username:	pi,	password:	raspberry)	does	not	have	privileges	that,	say,
allow	you	to	go	to	some	vital	part	of	the	operating	system	and	start	deleting	files.
Instead,	to	cause	such	mayhem,	you	have	to	prefix	those	commands	with	sudo.
This	just	adds	a	bit	of	protection	against	accidents.

For	the	commands	we	have	discussed	so	far,	you	will	not	need	to	prefix	them
with	sudo.	However,	just	for	interest,	try	typing	the	following:

$sudo	ls

This	will	work	the	same	way	ls	on	its	own	works;	you	are	still	in	the	same

working	directory.

	

Applications
Installing	new	applications	requires	the	command	line	again.	The	command	apt-
get	is	used	to	both	install	and	uninstall	applications.	Because	installing	an
application	often	requires	super-user	privileges,	you	should	prefix	apt-get
commands	with	sudo.

The	command	apt-get	uses	a	database	of	available	packages	that	is	updated
over	the	Internet,	so	the	first	apt-get	command	you	should	use	is

$sudo	apt-get	update

which	updates	the	database	of	packages.	You	will	need	to	be	connected	to	the
Internet	for	it	to	work.

To	install	a	particular	package,	all	you	need	to	know	is	the	package	manager
name	for	it.	For	example,	to	install	the	Abiword	word	processor	application,	all
you	need	to	type	is	the	following:

$sudo	apt-get	install	abiword

It	will	take	a	while	for	everything	that	is	needed	to	be	downloaded	and
installed,	but	at	the	end	of	the	process	you	will	find	that	you	have	a	new	folder	in
your	start	menu	called	Office	that	contains	the	application	Abiword	(see	Figure
2-6).

Figure	2-6	Abiword	screen.

You	will	notice	that	the	text	document	in	Abiword	is	actually	part	of	this
chapter.	In	fact,	it	is	close	to	this	part	of	this	chapter,	as	I	am	writing	it.	(I	can
feel	myself	falling	into	a	recursive	hole.	I	may	well	vanish	in	a	puff	of	logic.)

Abiword	is	a	perfectly	serviceable	word	processor.	Abiword	is	fairly	light-
weight	and	fast.	For	a	more	fully	featured	office	suite,	try	LibreOffice	(available
on	the	Pi	Store—see	below).

While	we	are	on	the	subject	of	office	applications,	the	spreadsheet	stable	mate
of	Abiword	is	called	Gnumeric.	To	install	it,	here	is	all	you	need	to	type:

$sudo	apt-get	install	gnumeric

Once	this	application	is	installed,	another	option	will	have	appeared	in	your
Office	menu—this	one	for	Gnumeric.

To	find	out	about	other	packages	you	might	want	to	install,	look	for
recommendations	on	the	Internet,	especially	on	the	Raspberry	Pi	forum
(www.raspberrypi.org/phpBB3).	You	can	also	browse	the	list	of	packages
available	for	Raspbian	Wheezy	at	http://packages.debian.org/stable/.

Not	all	of	these	packages	will	work,	because	the	Raspberry	Pi	does	not	have

http://www.raspberrypi.org/phpBB3
http://packages.debian.org/stable/

vast	amounts	of	memory	and	storage	available	to	it;	however,	many	will.
If	you	want	to	remove	a	package,	use	the	following	command:

$sudo	apt-get	remove	--auto-remove	--purge	packagename

This	removes	both	the	package	and	any	packages	it	depends	on	that	are	not
used	by	something	else	that	still	needs	them.	Be	sure	to	keep	an	eye	on	the
bottom-right	corner	of	your	File	Manager	window;	it	will	tell	you	how	much
free	space	is	available.

If	you	would	prefer	to	use	a	graphical	user	interface	to	find	new	applications
for	the	Raspberry	Pi,	then	you	can	also	use	the	Pi	Store	which	you	will	find	on
the	Internet	section	of	the	Menu.

	

Internet	Resources
Aside	from	the	business	of	programming	the	Raspberry	Pi,	you	now	have	a
functioning	computer	that	you	are	probably	keen	to	explore.	To	help	you	with
this,	many	useful	Internet	sites	are	available	where	you	can	obtain	advice	and
recommendations	for	getting	the	most	out	of	your	Raspberry	Pi.

Table	2-1	lists	some	of	the	more	useful	sites	relating	to	the	Raspberry	Pi.	Your
search	engine	will	happily	show	you	many	more.

Table	2-1	Internet	Resources	for	the	Raspberry	Pi

	

Summary
Now	that	we	have	everything	set	up	and	ready	to	go	on	our	Raspberry	Pi,	it	is
time	to	start	programming	in	Python.

3
Python	Basics

The	time	has	come	to	start	creating	some	of	our	own	programs	for	the
Raspberry	Pi.	The	language	we	are	going	to	use	is	called	Python.	It	has	the	great
benefit	that	it	is	easy	to	learn	while	at	the	same	time	being	powerful	enough	to
create	some	interesting	programs,	including	some	simple	games	and	programs
that	use	graphics.

As	with	most	things	in	life,	it	is	necessary	to	learn	to	walk	before	you	can	run,
and	so	we	will	begin	with	the	basics	of	the	Python	language.

Okay,	so	a	programming	language	is	a	language	for	writing	computer
programs	in.	But	why	do	we	have	to	use	a	special	language	anyway?	Why
couldn’t	we	just	use	a	human	language?	How	does	the	computer	use	the	things
that	we	write	in	this	language?

The	reason	why	we	don’t	use	English	or	some	other	human	language	is	that
human	languages	are	vague	and	ambiguous.	Computer	languages	use	English
words	and	symbols,	but	in	a	very	structured	way.

	

IDLE
The	best	way	to	learn	a	new	language	is	to	begin	using	it	right	away.	So	let’s
start	up	the	program	we	are	going	to	use	to	help	us	write	Python.	This	program	is
called	IDLE,	and	you	will	find	it	in	the	Programming	section	of	the	Menu.
Although	the	program	is	IDLE,	it	is	listed	in	the	Menu	as	two	options,	“Python
2”	and	“Python	3.”	Figure	3-1	shows	IDLE	and	the	Python	3	Shell.

Figure	3-1	IDLE	and	the	Python	Shell.

Python	Versions
Python	3	was	a	major	change	over	Python	2.	This	book	is	based	on	Python	3,	but
as	you	get	further	into	Python	you	may	find	that	some	of	the	modules	you	want
to	use	are	not	available	for	Python	3	and	you	need	to	revert	to	Python	2.

Python	Shell
What	you	see	in	Figure	3-1	is	the	Python	Shell.	This	is	the	window	where	you
type	Python	commands	and	see	what	they	do.	It	is	very	useful	for	little
experiments,	especially	while	you’re	learning	Python.

Rather	like	at	the	command	prompt,	you	can	type	in	commands	after	the
prompt	(in	this	case,	>>>)	and	the	Python	console	will	show	you	what	it	has	done
on	the	line	below.

Arithmetic	is	something	that	comes	naturally	to	all	programming	languages,
and	Python	is	no	exception.	Therefore,	type	2	+	2	after	the	prompt	in	the	Python
Shell	and	you	should	see	the	result	(4)	on	the	line	below,	as	shown	in	Figure	3-2.

Figure	3-2	Arithmetic	in	the	Python	Shell.

Editor
The	Python	Shell	is	a	great	place	to	experiment,	but	it	is	not	the	right	place	to
write	a	program.	Python	programs	are	kept	in	files	so	that	you	do	not	have	to
retype	them.	A	file	may	contain	a	long	list	of	programming	language	commands,
and	when	you	want	to	run	all	the	commands,	what	you	actually	do	is	run	the	file.

The	menu	bar	at	the	top	of	IDLE	allows	us	to	create	a	new	file.	Therefore,
select	File	and	then	New	Window	from	the	menu	bar.	Figure	3-3	shows	the
IDLE	editor	in	a	new	window.

Figure	3-3	The	IDLE	editor.

Type	the	following	two	lines	of	code	into	the	IDLE	editor	window:

print('Hello')

print('World')

You	will	notice	that	the	editor	does	not	have	the	>>>	prompt.	This	is	because
what	we	write	here	will	not	be	executed	immediately;	instead,	it	will	just	be
stored	in	a	file	until	we	decide	to	run	it.	If	you	wanted,	you	could	use	nano	or
some	other	text	editor	to	write	the	file,	but	the	IDLE	editor	integrates	nicely	with
Python.	It	also	has	some	knowledge	of	the	Python	language	and	can	thus	serve
as	a	memory	aid	when	you	are	typing	out	programs.

We	need	a	good	place	to	keep	all	the	Python	programs	we	will	be	writing,	so
open	the	File	Browser	from	the	start	menu	(its	under	Accessories).	Right-click
over	the	main	area	and	select	New	and	then	Folder	from	the	pop-up	menu	(see
Figure	3-4).	Enter	the	name	Python	for	the	folder	and	press	the	RETURN	key.

Figure	3-4	Creating	a	Python	folder.

Next,	we	need	to	switch	back	to	our	editor	window	and	save	the	file	using	the
File	menu.	Navigate	to	inside	the	new	Python	directory	and	give	the	file	the
name	hello.py,	as	shown	in	Figure	3-5.

Figure	3-5	Saving	the	program.

To	actually	run	the	program	and	see	what	it	does,	go	to	the	Run	menu	and
select	Run	Module.	You	should	see	the	results	of	the	program’s	execution	in	the
Python	Shell.	It	is	no	great	surprise	that	the	program	prints	the	two	words	Hello
and	World,	each	on	its	own	line.

What	you	type	in	the	Python	Shell	does	not	get	saved	anywhere;	therefore,	if
you	exit	IDLE	and	then	start	it	up	again,	anything	you	typed	in	the	Python	Shell
will	be	lost.	However,	because	we	saved	our	editor	file	(hello.py),	we	can	load	it
at	any	time	from	the	File	menu.

NOTE	To	save	this	book	from	becoming	a	series	of	screen	dumps,	from	now	on	if
I	want	you	to	type	something	in	the	Python	Shell,	I	will	precede	it	with	>>>.
The	results	will	then	appear	on	the	lines	below	it.

	

Numbers
Numbers	are	fundamental	to	programming,	and	arithmetic	is	one	of	the	things
computers	are	very	good	at.	We	will	begin	by	experimenting	with	numbers,	and
the	best	place	to	experiment	is	the	Python	Shell.

Type	the	following	into	the	Python	Shell:

>>>	20	*	9	/	5	+	32

68.0

This	isn’t	really	advancing	much	beyond	the	2	+	2	example	we	tried	before.
However,	this	example	does	tell	us	a	few	things:

	*	means	multiply.

	/	means	divide.

	Python	does	multiplication	before	division,	and	it	does	division	before
addition.

If	you	wanted	to,	you	could	add	some	parentheses	to	guarantee	that
everything	happens	in	the	right	order,	like	this:

>>>	(20	*	9	/	5)	+	32

68.0

The	numbers	you	have	there	are	all	whole	numbers	(or	integers	as	they	are
called	by	programmers).	We	can	also	use	a	decimal	point	if	we	want	to	use	such
numbers.	In	programming,	these	kinds	of	numbers	are	called	floats,	which	is
short	for	floating	point.

	

Variables
Sticking	with	the	numbers	theme	for	a	moment,	let’s	investigate	variables.	You
can	think	of	a	variable	as	something	that	has	a	value.	It	is	a	bit	like	using	letters
as	stand-ins	for	numbers	in	algebra.	To	begin,	try	entering	the	following:

>>>	k	=	9.0	/	5.0

The	equals	sign	assigns	a	value	to	a	variable.	The	variable	must	be	on	the	left
side	and	must	be	a	single	word	(no	spaces);	however,	it	can	be	as	long	as	you
like	and	can	contain	numbers	and	the	underscore	character	(_).	Also,	characters
can	be	upper-and	lowercase.	Those	are	the	rules	for	naming	variables;	however,
there	are	also	conventions.	The	difference	is	that	if	you	break	the	rules,	Python
will	complain,	whereas	if	you	break	the	conventions,	other	programmers	may
snort	derisively	and	raise	their	eyebrows.

The	conventions	for	variables	are	that	they	should	start	with	a	lowercase	letter
and	should	use	an	underscore	between	what	in	English	would	be	words	(for
instance,	number_of_chickens).	The	examples	in	Table	3-1	give	you	some	idea
of	what	is	legal	and	what	is	conventional.

Table	3-1	Naming	Variables

Many	other	languages	use	a	different	convention	for	variable	names	called
bumpy-case	or	camel-case,	where	the	words	are	separated	by	making	the	start	of
each	word	(except	the	first	one)	uppercase	(for	example,	numberOfChickens).
You	will	sometimes	see	this	in	Python	example	code.	Ultimately,	if	the	code	is
just	for	your	own	use,	then	how	the	variable	is	written	does	not	really	matter,	but
if	your	code	is	going	to	be	read	by	others,	it’s	a	good	idea	to	stick	to	the
conventions.

By	sticking	to	the	naming	conventions,	it’s	easy	for	other	Python
programmers	to	understand	your	program.

If	you	do	something	Python	doesn’t	like	or	understand,	you	will	get	an	error
message.	Try	entering	the	following:

>>>	2beOrNot2b	=	1

SyntaxError:	invalid	syntax

This	is	an	error	because	you	are	trying	to	define	a	variable	that	starts	with	a
digit,	which	is	not	allowed.

A	little	while	ago,	we	assigned	a	value	to	the	variable	k.	We	can	see	what
value	it	has	by	just	entering	k,	like	so:

>>>	k

1.8

Python	has	remembered	the	value	of	k,	so	we	can	now	use	it	in	other
expressions.	Going	back	to	our	original	expression,	we	could	enter	the
following:

>>>	20	*	k	+	32

68.0

	

For	Loops
Arithmetic	is	all	very	well,	but	it	does	not	make	for	a	very	exciting	program.
Therefore,	in	this	section	you	will	learn	about	looping,	which	means	telling
Python	to	perform	a	task	a	number	of	times	rather	than	just	once.	In	the
following	example,	you	will	need	to	enter	more	than	one	line	of	Python.	When
you	press	RETURN	and	go	to	the	second	line,	you	will	notice	that	Python	is
waiting.	It	has	not	immediately	run	what	you	have	typed	because	it	knows	that
you	have	not	finished	yet.	The	:	character	at	the	end	of	the	line	means	that	there
is	more	to	do.

These	extra	tasks	must	each	appear	on	an	indented	line.	To	get	this	two-line
program	to	actually	run,	press	RETURN	twice	after	the	second	line	is	entered.

This	program	has	printed	out	the	numbers	between	1	and	9	rather	than	1	and
10.	The	range	command	has	an	exclusive	end	point—that	is,	it	doesn’t	include
the	last	number	in	the	range,	but	it	does	include	the	first.

You	can	check	this	out	by	just	taking	the	range	bit	of	the	program	and	asking
it	to	show	its	values	as	a	list,	like	this:

Some	of	the	punctuation	here	needs	a	little	explaining.	The	parentheses	are
used	to	contain	what	are	called	parameters.	In	this	case,	range	has	two
parameters:	from	(1)	and	to	(10),	separated	by	a	comma.

The	for	in	command	has	two	parts.	After	the	word	for	there	must	be	a
variable	name.	This	variable	will	be	assigned	a	new	value	each	time	around	the

loop.	Therefore,	the	first	time	it	will	be	1,	the	next	time	2,	and	so	on.	After	the
word	in,	Python	expects	to	see	something	that	works	out	to	be	a	list	of	items.	In
this	case,	this	is	a	list	of	the	numbers	between	1	and	9.

The	print	command	also	takes	an	argument	that	displays	it	in	the	Python
Shell.	Each	time	around	the	loop,	the	next	value	of	x	will	be	printed	out.

	

Simulating	Dice
We’ll	now	build	on	what	you	just	learned	about	loops	to	write	a	program	that
simulates	throwing	a	die	10	times.

To	do	this,	you	will	need	to	know	how	to	generate	a	random	number.	So,	first
let’s	work	out	how	to	do	that.	If	you	didn’t	have	this	book,	one	way	to	find	out
how	to	generate	a	random	number	would	be	to	type	random	numbers	python
into	your	search	engine	and	look	for	fragments	of	code	to	type	into	the	Python
Shell.	However,	you	do	have	this	book,	so	here	is	what	you	need	to	write:

Try	entering	the	second	line	a	few	times,	and	you	will	see	that	you	are	getting
different	random	numbers	between	1	and	6.

The	first	line	imports	a	library	that	tells	Python	how	to	generate	numbers.	You
will	learn	much	more	about	libraries	later	in	this	book,	but	for	now	you	just	need
to	know	that	we	have	to	issue	this	command	before	we	can	start	using	the
randint	command	that	actually	gives	us	a	random	number.

NOTE	I	am	being	quite	liberal	with	the	use	of	the	word	command	here.	Strictly
speaking,	items	such	as	randint	are	actually	functions,	not	commands,	but
we	will	come	to	this	later.

Now	that	you	can	make	a	single	random	number,	you	need	to	combine	this
with	your	knowledge	of	loops	to	print	off	10	random	numbers	at	a	time.	This	is
getting	beyond	what	can	sensibly	be	typed	into	the	Python	Shell,	so	we	will	use
the	IDLE	editor.

You	can	either	type	in	the	examples	from	the	text	here	or	download	all	the
Python	examples	used	in	the	book	from	the	book’s	website
(www.raspberrypibook.com).	Each	programming	example	has	a	number.	Thus,
this	program	will	be	contained	in	the	file	3_1_dice.py,	which	can	be	loaded	into

http://www.raspberrypibook.com

the	IDLE	editor.

Installing	the	Example	Programs
To	copy	all	the	example	programs	for	this	book	onto	your	Raspberry	Pi,	make
sure	that	it	is	connected	to	the	Internet	and	then	issue	the	following	commands:

To	see	the	full	list	of	programs	and	other	files	needed	in	the	book,	list	the
contents	of	the	directory	using	the	‘ls’	command.

At	this	stage,	it	is	worth	typing	in	the	examples	to	help	the	concepts	sink	in.
Open	up	a	new	IDLE	editor	window,	type	the	following	into	it,	and	then	save
your	work:

The	first	line	begins	with	a	#	character.	This	indicates	that	the	entire	line	is
not	program	code	at	all,	but	just	a	comment	to	anyone	looking	at	the	program.
Comments	like	this	provide	a	useful	way	of	adding	extra	information	about	a
program	into	the	program	file,	without	interfering	with	the	operation	of	the
program.	In	other	words,	Python	will	ignore	any	line	that	starts	with	#.

Now,	from	the	Run	menu,	select	Run	Module.	The	result	should	look
something	like	Figure	3-6,	where	you	can	see	the	output	in	the	Python	Shell
behind	the	editor	window.

Figure	3-6	The	dice	simulation.

	

If
Now	it’s	time	to	spice	up	the	dice	program	so	that	two	dice	are	thrown,	and	if	we
get	a	total	of	7	or	11,	or	any	double,	we	will	print	a	message	after	the	throw.
Type	or	load	the	following	program	into	the	IDLE	editor:

When	you	run	this	program,	you	should	see	something	like	this:

The	first	thing	to	notice	about	this	program	is	that	now	two	random	numbers
between	1	and	6	are	generated.	One	for	each	of	the	dice.	A	new	variable,	total,
is	assigned	to	the	sum	of	the	two	throws.

Next	comes	the	interesting	bit:	the	if	command.	The	if	command	is
immediately	followed	by	a	condition	(in	the	first	case,	total	==	7).	There	is
then	a	colon	(:),	and	the	subsequent	lines	will	only	be	executed	by	Python	if	the
condition	is	true.	At	first	sight,	you	might	think	there	is	a	mistake	in	the
condition	because	it	uses	==	rather	than	=.	The	double	equal	sign	is	used	when
comparing	items	to	see	whether	they	are	equal,	whereas	the	single	equal	sign	is
used	when	assigning	a	value	to	a	variable.

The	second	if	is	not	tabbed	in,	so	it	will	be	executed	regardless	of	whether
the	first	if	is	true.	This	second	if	is	just	like	the	first,	except	that	we	are	looking
for	a	total	of	11.	The	final	if	is	a	little	different	because	it	compares	two
variables	(throw_1	and	throw_2)	to	see	if	they	are	the	same,	indicating	that	a
double	has	been	thrown.

Now,	the	next	time	you	go	to	play	Monopoly	and	find	that	the	dice	are
missing,	you	know	what	to	do:	Just	boot	up	your	Raspberry	Pi	and	write	a	little
program.

Comparisons
To	test	to	see	whether	two	values	are	the	same,	we	use	==.	This	is	called	a
comparison	operator.	The	comparison	operators	we	can	use	are	shown	in	Table
3-2.

Table	3-2	Comparison	Operators

You	can	do	some	experimenting	with	these	comparison	operators	in	the
Python	Shell.	Here’s	an	example:

>>>	10	>	9

True

In	this	case,	we	have	basically	said	to	Python,	“Is	10	greater	than	9?”	Python
has	replied,	“True.”	Now	let’s	ask	Python	whether	10	is	less	than	9:

>>>	10	<	9

False

Being	Logical
You	cannot	fault	the	logic.	When	Python	tells	us	“True”	or	“False,”	it	is	not	just
displaying	a	message	to	us.	True	and	False	are	special	values	called	logical
values.	Any	condition	we	use	with	an	if	statement	will	be	turned	into	a	logical
value	by	Python	when	it	is	deciding	whether	or	not	to	perform	the	next	line.

These	logical	values	can	be	combined	rather	like	the	way	you	perform
arithmetic	operations	like	plus	and	minus.	It	does	not	make	sense	to	add	True
and	True,	but	it	does	make	sense	sometimes	to	say	True	and	True.

As	an	example,	if	we	wanted	to	display	a	message	every	time	the	total	throw
of	our	dice	was	between	5	and	9,	we	could	write	something	like	this:

As	well	as	and,	we	can	use	or.	We	can	also	use	not	to	turn	True	into	False,
and	vice	versa,	as	shown	here:

>>>	not	True

False

Thus,	another	way	of	saying	the	same	thing	would	be	to	write	the	following:

Exercise
Try	incorporating	the	preceding	test	into	the	dice	program.	While	you	are	at	it,
add	two	more	if	statements:	one	that	prints	“Good	Throw!”	if	the	throw	is
higher	than	10	and	one	that	prints	“Unlucky!”	if	the	throw	is	less	than	4.	Try
your	program	out.	If	you	get	stuck,	you	can	look	at	the	solution	in	the	file
3_3_double_dice_solution.py.

Else
In	the	preceding	example,	you	will	see	that	some	of	the	possible	throws	can	be
followed	by	more	than	one	message.	Any	of	the	if	lines	could	print	an	extra
message	if	the	condition	is	true.	Sometimes	you	want	a	slightly	different	type	of
logic,	so	that	if	the	condition	is	true,	you	do	one	thing	and	otherwise	you	do
another.	In	Python,	you	use	else	to	accomplish	this:

In	this	case,	only	one	of	the	two	messages	will	ever	be	printed.
Another	variation	on	this	is	elif,	which	is	short	for	else	if.	Thus,	we	could

expand	the	previous	example	so	that	there	are	three	mutually	exclusive	clauses,
like	this:

	

While
Another	command	for	looping	is	while,	which	works	a	little	differently	than
for.	The	command	while	looks	a	bit	like	an	if	command	in	that	it	is
immediately	followed	by	a	condition.	In	this	case,	the	condition	is	for	staying	in
the	loop.	In	other	words,	the	code	inside	the	loop	will	be	executed	until	the
condition	is	no	longer	true.	This	means	that	you	have	to	be	careful	to	ensure	that
the	condition	will	at	some	point	be	false;	otherwise,	the	loop	will	continue
forever	and	your	program	will	appear	to	have	hung.

To	illustrate	the	use	of	while,	the	dice	program	has	been	modified	so	that	it
just	keeps	on	rolling	until	a	double	6	is	rolled:

This	program	will	work.	Try	it	out.	However,	it	is	a	little	bigger	than	it	should
be.	We	are	having	to	repeat	the	following	lines	twice—once	before	the	loop
starts	and	once	inside	the	loop:

throw_1	=	random.randint(1,	6)

throw_2	=	random.randint(1,	6)

A	well-known	principle	in	programming	is	DRY	(Don’t	Repeat	Yourself).
Although	it’s	not	a	concern	in	a	little	program	like	this,	as	programs	get	more

complex,	you	need	to	avoid	the	situation	where	the	same	code	is	used	in	more
than	one	place,	which	makes	the	programs	difficult	to	maintain.

We	can	use	the	command	break	to	shorten	the	code	and	make	it	a	bit	“drier.”
When	Python	encounters	the	command	break,	it	breaks	out	of	the	loop.	Here	is
the	program	again,	this	time	using	break:

The	condition	for	staying	in	the	loop	is	permanently	set	to	True.	The	loop	will
continue	until	it	gets	to	break,	which	will	only	happen	after	throwing	a	double	6.

	

Summary
You	should	now	be	happy	to	play	with	IDLE,	trying	things	out	in	the	Python
Shell.	I	strongly	recommend	that	you	try	altering	some	of	the	examples	from	this
chapter,	changing	the	code	and	seeing	how	that	affects	what	the	programs	do.

In	the	next	chapter,	we	will	move	on	past	numbers	to	look	at	some	of	the
other	types	of	data	you	can	work	with	in	Python.

4
Strings,	Lists,	and	Dictionaries

This	chapter	could	have	had	“and	Functions”	added	to	its	title,	but	the	title	was
already	long	enough.	In	this	chapter,	you	will	first	explore	and	play	with	the
various	ways	of	representing	data	and	adding	some	structure	to	your	programs	in
Python.	You	will	then	put	everything	you	learned	together	into	the	simple	game
of	Hangman,	where	you	have	to	guess	a	word	chosen	at	random	by	asking
whether	that	word	contains	a	particular	letter.

The	chapter	ends	with	a	reference	section	that	tells	you	all	you	need	to	know
about	the	most	useful	built-in	functions	for	math,	strings,	lists,	and	dictionaries.

	

String	Theory
No,	this	is	not	the	Physics	kind	of	String	Theory.	In	programming,	a	string	is	a
sequence	of	characters	you	use	in	your	program.	In	Python,	to	make	a	variable
that	contains	a	string,	you	can	just	use	the	regular	=	operator	to	make	the
assignment,	but	rather	than	assigning	the	variable	a	number	value,	you	assign	it	a
string	value	by	enclosing	that	value	in	single	quotes,	like	this:	>>>	book_name	=
'Programming	Raspberry	Pi'

If	you	want	to	see	the	contents	of	a	variable,	you	can	do	so	either	by	entering
just	the	variable	name	into	the	Python	Shell	or	by	using	the	print	command,	just

as	we	did	with	variables	that	contain	a	number:	
There	is	a	subtle	difference	between	the	results	of	each	of	these	methods.	If

you	just	enter	the	variable	name,	Python	puts	single	quotes	around	it	so	that	you
can	tell	it	is	a	string.	On	the	other	hand,	when	you	use	print,	Python	just	prints
the	value.

NOTE	You	can	also	use	double	quotes	to	define	a	string,	but	the	convention	is	to
use	single	quotes	unless	you	have	a	reason	for	using	double	quotes	(for
example,	if	the	string	you	want	to	create	has	an	apostrophe	in	it).

You	can	find	out	how	many	characters	a	string	has	in	it	by	doing	this:

You	can	find	the	character	at	a	particular	place	in	the	string	like	so:

Two	things	to	notice	here:	first,	the	use	of	square	brackets	rather	than	the
parentheses	that	are	used	for	parameters	and,	second,	that	the	positions	start	at	0
and	not	1.	To	find	the	first	letter	of	the	string,	you	need	to	do	the	following:	

If	you	put	a	number	in	that	is	too	big	for	the	length	of	the	string,	you	will	see
this:

This	is	an	error,	and	it’s	Python’s	way	of	telling	us	that	we	have	done
something	wrong.	More	specifically,	the	“string	index	out	of	range”	part	of	the
message	tells	us	that	we	have	tried	to	access	something	that	we	can’t.	In	this
case,	that’s	element	100	of	a	string	that	is	only	24	characters	long.

You	can	chop	lumps	out	of	a	big	string	into	a	smaller	string,	like	this:

The	first	number	within	the	brackets	is	the	starting	position	for	the	string	we
want	to	chop	out,	and	the	second	number	is	not,	as	you	might	expect,	the
position	of	the	last	character	you	want,	but	rather	the	last	character	plus	1.

As	an	experiment,	try	and	chop	out	the	word	raspberry	from	the	title.	If	you
do	not	specify	the	second	number,	it	will	default	to	the	end	of	the	string:	

Similarly,	if	you	do	not	specify	the	first	number,	it	defaults	to	0.

Finally,	you	can	also	join	strings	together	by	using	+	operator.	Here’s	an
example:

	

Lists
Earlier	in	the	book	when	you	were	experimenting	with	numbers,	a	variable	could
only	hold	a	single	number.	Sometimes,	however,	it	is	useful	for	a	variable	to
hold	a	list	of	numbers	or	strings,	or	a	mixture	of	both—or	even	a	list	of	lists.
Figure	4-1	will	help	you	to	visualize	what	is	going	on	when	a	variable	is	a	list.

Figure	4-1	An	array.

Lists	behave	rather	like	strings.	After	all,	a	string	is	a	list	of	characters.	The
following	example	shows	you	how	to	make	a	list.	Notice	how	len	works	on	lists

as	well	as	strings:	
Square	brackets	are	used	to	indicate	a	list,	and	just	like	with	strings	we	can

use	square	brackets	to	find	an	individual	element	of	a	list	or	to	make	a	shorter

list	from	a	bigger	one:	
What’s	more,	you	can	use	=	to	assign	a	new	value	to	one	of	the	items	in	the

list,	like	this:

This	changes	the	first	element	of	the	list	(element	0)	from	123	to	just	1.
As	with	strings,	you	can	join	lists	together	using	the	+	operator:

If	you	want	to	sort	the	list,	you	can	do	this:

To	remove	an	item	from	a	list,	you	use	the	command	pop,	as	shown	next.	If
you	do	not	specify	an	argument	to	pop,	it	will	just	remove	the	last	element	of	the
list	and	return	it.

If	you	specify	a	number	as	the	argument	to	pop,	that	is	the	position	of	the

element	to	be	removed.	Here’s	an	example:	
As	well	as	removing	items	from	a	list,	you	can	also	insert	an	item	into	the	list

at	a	particular	position.	The	function	insert	takes	two	arguments.	The	first	is	the
position	before	which	to	insert,	and	the	second	argument	is	the	item	to	insert.

When	you	want	to	find	out	how	long	a	list	is,	you	use	len(numbers),	but
when	you	want	to	sort	the	list	or	“pop”	an	element	off	the	list,	you	put	a	dot	after

the	variable	containing	the	list	and	then	issue	the	command,	like	this:
numbers.sort()

These	two	different	styles	are	a	result	of	something	called	object	orientation,
which	we	will	discuss	in	the	next	chapter.

Lists	can	be	made	into	quite	complex	structures	that	contain	other	lists	and	a
mixture	of	different	types—numbers,	strings,	and	logical	values.	Figure	4-2
shows	the	list	structure	that	results	from	the	following	line	of	code:	

Figure	4-2	A	complex	list.

You	can	combine	what	you	know	about	lists	with	for	loops	and	write	a	short
program	that	creates	a	list	and	then	prints	out	each	element	of	the	list	on	a

separate	line:	
Here’s	the	output	of	this	program:

	

Functions
When	you	are	writing	small	programs	like	the	ones	we	have	been	writing	so	far,
they	only	really	perform	one	function,	so	there	is	little	need	to	break	them	up.	It
is	fairly	easy	to	see	what	they	are	trying	to	achieve.	As	programs	get	larger,

however,	things	get	more	complicated	and	it	becomes	necessary	to	break	up	your
programs	into	units	called	functions.	When	we	get	even	further	into
programming,	we	will	look	at	better	ways	still	of	structuring	our	programs	using
classes	and	modules.

Many	of	the	things	I	have	been	referring	to	as	commands	are	actually
functions	that	are	built	into	Python.	Examples	of	this	are	range	and	print.

The	biggest	problem	in	software	development	of	any	sort	is	managing
complexity.	The	best	programmers	write	software	that	is	easy	to	look	at	and
understand	and	requires	very	little	in	the	way	of	extra	explanation.	Functions	are
a	key	tool	in	creating	easy-to-understand	programs	that	can	be	changed	without
difficulty	or	risk	of	the	whole	thing	falling	into	a	crumpled	mess.

A	function	is	a	little	like	a	program	within	a	program.	We	can	use	it	to	wrap
up	a	sequence	of	commands	we	want	to	do.	A	function	that	we	define	can	be
called	from	anywhere	in	our	program	and	will	contain	its	own	variables	and	its
own	list	of	commands.	When	the	commands	have	been	run,	we	are	returned	to
just	after	wherever	it	was	in	the	code	we	called	the	function	in	the	first	place.

As	an	example,	let’s	create	a	function	that	simply	takes	a	string	as	an
argument	and	adds	the	word	please	to	the	end	of	it.	Load	the	following	file—or
even	better,	type	it	in	to	a	new	editor	window—and	then	run	it	to	see	what

happens:	
The	function	starts	with	the	keyword	def.	This	is	followed	by	the	name	of	the

function,	which	follows	the	same	naming	conventions	as	variables.	After	that
come	the	parameters	inside	parentheses	and	separated	by	commas	if	there	are
more	than	one.	The	first	line	must	end	with	a	colon.

Inside	the	function,	we	are	using	a	new	variable	called	polite_sentence	that
takes	the	parameter	passed	into	the	function	and	adds	“please”	to	it	(including
the	leading	space).	This	variable	can	only	be	used	from	inside	the	function.

The	last	line	of	the	function	is	a	return	command.	This	specifies	what	value
the	function	should	give	back	to	the	code	that	called	it.	This	is	just	like
trigonometric	functions	such	as	sin,	where	you	pass	in	an	angle	and	get	back	a
number.	In	this	case,	what	is	returned	is	the	value	in	the	variable
polite_sentence.

To	use	the	function,	we	just	specify	its	name	and	supply	it	with	the
appropriate	arguments.	A	return	value	is	not	mandatory,	and	some	functions	will

just	do	something	rather	than	calculate	something.	For	example,	we	could	write
a	rather	pointless	function	that	prints	“Hello”	a	specified	number	of	times:	

This	covers	the	basics	of	what	we	will	need	to	do	to	write	our	game	of
Hangman.	Although	you’ll	need	to	learn	some	other	things,	we	can	come	back	to
these	later.

	

Hangman
Hangman	is	a	word-guessing	game,	usually	played	with	pen	and	paper.	One
player	chooses	a	word	and	draws	a	dash	for	each	letter	of	the	word,	and	the	other
player	has	to	guess	the	word.	They	guess	a	letter	at	a	time.	If	the	letter	guessed	is
not	in	the	word,	they	lose	a	life	and	part	of	the	hangman’s	scaffold	is	drawn.	If
the	letter	is	in	the	word,	all	occurrences	of	the	letter	are	shown	by	replacing	the
dashes	with	the	letters.

We	are	going	to	let	Python	think	of	a	word	and	we	will	have	to	guess	what	it
is.	Rather	than	draw	a	scaffold,	Python	is	just	going	to	tell	us	how	many	lives	we
have	left.

Input	in	Python	2	and	Python	3
This	example	is	written	in	Python	3	and	the	finished	Hangman	example	will
cause	an	error	if	you	try	and	run	it	as	a	Python	2	program,	say	by	accidentally
selecting	Python	2	from	the	Programing	Menu	group	when	starting	IDLE.

The	incompatibility	arises	because	the	‘input’	function	works	rather
differently	between	the	two	versions	of	Python.	In	Python	3	the	input
command	takes	a	parameter	that	is	the	prompt	to	the	user	as	to	what	they	are	to
type	in	as	input	to	the	program.	When	they	have	done	this	and	hit	ENTER	then
‘input’	will	return	whatever	they	typed	as	a	string.	Even	if	what	you	type	is	a
number.

In	Python	2,	‘input’	tries	to	make	sense	of	what	you	entered.	So	if	you	typed
a	number,	it	will	return	a	number	and	if	you	type	in	something	that	starts	with	a
letter,	Python	will	assume	that	its	a	variable	and	try	and	get	its	value.	Generally,

whatever	you	type	is	unlikely	to	be	the	name	of	a	variable	and	you	will	get	an
error	message.

The	approach	of	Python	3	to	reading	input	is	much	more	consistent	with
other	programming	languages.

You	can	make	the	Hangman	program	work	with	Python	2	if	you	change
every	occurrence	of	‘input’	in	the	program	with	‘raw_input’.	The	Python	2
‘raw_input’	function	works	just	like	‘input’	in	Python	3.

You	are	going	to	start	with	how	to	give	Python	a	list	of	words	to	chose	from.
This	sounds	like	a	job	for	a	list	of	strings:

The	next	thing	the	program	needs	to	do	is	to	pick	one	of	those	words	at
random.	We	can	write	a	function	that	does	that	and	test	it	on	its	own:	

Run	this	program	a	few	times	to	check	that	it	is	picking	different	words	from
the	list.	The	‘choice’	function	from	the	‘random’	module	will,	very	helpfully,
pick	one	of	the	items	in	the	list	at	random.

This	is	a	good	start,	but	it	needs	to	fit	into	the	structure	of	the	game.	The	next
thing	to	do	is	to	define	a	new	variable	called	lives_remaining.	This	will	be	an
integer	that	we	can	start	off	at	14	and	decrease	by	1	every	time	a	wrong	guess	is
made.	This	type	of	variable	is	called	a	global	variable,	because	unlike	variables
defined	in	functions,	we	can	access	it	from	anywhere	in	the	program.

As	well	as	a	new	variable,	we	are	also	going	to	write	a	function	called	play
that	controls	the	game.	We	know	what	play	should	do,	we	just	don’t	have	all	the
details	yet.	Therefore,	we	can	write	the	function	play	and	make	up	other
functions	that	it	will	call,	such	as	get_guess	and	process_guess,	as	well	as	use
the	function	pick_a_word	we’ve	just	written.	Here	it	is:	

A	game	of	Hangman	first	involves	picking	a	word.	There	is	then	a	loop	that
continues	until	either	the	word	is	guessed	(process_guess	returns	True)	or
lives_remaining	has	been	reduced	to	zero.	Each	time	around	the	loop,	we	ask
the	user	for	another	guess.

We	cannot	run	this	at	the	moment	because	the	functions	get_guess	and
process_guess	don’t	exist	yet.	However,	we	can	write	what	are	called	stubs	for
them	that	will	at	least	let	us	try	out	our	play	function.	Stubs	are	just	versions	of
functions	that	don’t	do	much;	they	are	stand-ins	for	when	the	full	versions	of	the
functions	are	written.

The	stub	for	get_guess	just	simulates	the	player	always	guessing	the	letter	a,
and	the	stub	for	process_guess	always	assumes	that	the	player	guessed	wrong
and,	thus,	decreases	lives_remaining	by	1	and	returns	False	to	indicate	that
they	didn’t	win.

The	stub	for	process_guess	is	a	bit	more	complicated.	The	first	line	tells
Python	that	the	lives_remaining	variable	is	the	global	variable	of	that	name.
Without	that	line,	Python	assumes	that	it	is	a	new	variable	local	to	the	function.
The	stub	then	reduces	the	lives	remaining	by	1	and	returns	False	to	indicate	that
the	user	has	not	won	yet.	Eventually,	we	will	put	in	checks	to	see	if	the	player
has	guessed	all	the	letters	or	the	whole	word.

Open	the	file	4_5_hangman_play.py	and	run	it.	You	will	get	a	result	similar	to
this:

You	are	Hung!

The	word	was:	dog

What	happened	here	is	that	we	have	whizzed	through	all	14	guesses	very
quickly,	and	Python	has	told	us	what	the	word	was	and	that	we	have	lost.

All	we	need	to	do	to	complete	the	program	is	to	replace	the	stub	functions
with	real	functions,	starting	with	get_guess,	shown	here:	

The	first	thing	get_guess	does	is	to	tell	the	player	the	current	state	of	their
efforts	at	guessing	(something	like	“c--c--n”)	using	the	function
print_word_with_blanks.	This	is	going	to	be	another	stub	function	for	now.
The	player	is	then	told	how	many	lives	they	have	left.	Note	that	because	we	want
to	append	a	number	(lives_remaining)	after	the	string	Lives	Remaining:,	the
number	variable	must	be	converted	into	a	string	using	the	built-in	str	function.

The	built-in	function	input	prints	the	message	in	its	parameter	as	a	prompt
and	then	returns	anything	that	the	user	types.	Note	that	in	Python	2,	the	input
function	was	called	raw_input.	Therefore,	if	you	decide	to	use	Python	2,	change
this	function	to	raw_input.

Finally,	the	get_guess	function	returns	whatever	the	user	has	typed.
The	stub	function	print_word_with_blanks	just	reminds	us	that	we	have

something	else	to	write	later:

Open	the	file	4_6_hangman_get_guess.py	and	run	it.	You	will	get	a	result
similar	to	this:

Enter	guesses	until	all	your	lives	are	gone	to	verify	that	you	get	the	“losing”
message.

Next,	we	can	create	the	proper	version	of	print_word_with_blanks.	This
function	needs	to	display	something	like	“c--c--n,”	so	it	needs	to	know	which

letters	the	player	has	guessed	and	which	they	haven’t.	To	do	this,	it	uses	a	new
global	variable	(this	time	a	string)	that	contains	all	the	guessed	letters.	Every
time	a	letter	is	guessed,	it	gets	added	to	this	string:	guessed_letters	=	''

Here	is	the	function	itself:

This	function	starts	with	an	empty	string	and	then	steps	through	each	letter	in
the	word.	If	the	letter	is	one	of	the	letters	that	the	player	has	already	guessed,	it	is
added	to	display_word;	otherwise,	a	hyphen	(-)	is	added.	The	built-in	function
find	is	used	to	check	whether	the	letter	is	in	the	guessed_letters.	The	find
function	returns	-1	if	the	letter	is	not	there;	otherwise,	it	returns	the	position	of
the	letter.	All	we	really	care	about	is	whether	or	not	it	is	there,	so	we	just	check
that	the	result	is	greater	than	-1.	Finally,	the	word	is	printed	out.

Currently,	every	time	process_guess	is	called,	it	doesn’t	do	anything	with	the
guess	because	it’s	still	a	stub.	We	can	make	it	a	bit	less	of	a	stub	by	having	it	add
the	guessed	letter	to	guessed_letters,	like	so:	

Open	the	file	4_7_hangman_print_word.py	and	run	it.	You	will	get	a	result
something	like	this:

It’s	starting	to	look	like	the	proper	game	now.	However,	there	is	still	the	stub
for	process_guess	to	fill	out.	We	will	do	that	next:	

When	the	player	enters	a	guess,	they	have	two	choices:	They	can	either	enter
a	single-letter	guess	or	attempt	to	guess	the	whole	word.	In	this	method,	we	just
decide	which	type	of	guess	it	is	and	call	either	whole_word_guess	or
single_letter_guess.	Because	these	functions	are	both	pretty	straightforward,
we	will	implement	them	directly	rather	than	as	stubs:	

The	function	whole_word_guess	is	actually	easier	than	the
single_letter_guess	function:

All	we	have	to	do	is	compare	the	guess	and	the	actual	word	to	see	if	they	are
the	same	when	they	are	both	converted	to	lowercase.	If	they	are	not	the	same,	a
life	is	lost.	The	function	returns	True	if	the	guess	was	correct;	otherwise,	it
returns	False.

That’s	the	complete	program.	Open	up	4_8_hangman_full.py	in	the	IDLE
editor	and	run	it.	The	full	listing	is	shown	here	for	convenience:	

The	game	as	it	stands	has	a	few	limitations.	First,	it	is	case	sensitive,	so	you
have	to	enter	your	guesses	in	lowercase,	the	same	as	the	words	in	the	words
array.	Second,	if	you	accidentally	type	aa	instead	of	a	as	a	guess,	it	will	treat	this
as	a	whole-word	guess,	even	though	it	is	too	short	to	be	the	whole	word.	The
game	should	probably	spot	this	and	only	consider	guesses	the	same	length	as	the
secret	word	to	be	whole-word	guesses.

As	an	exercise,	you	might	like	to	try	and	correct	these	problems.	Hint:	For	the
case-sensitivity	problem,	experiment	with	the	built-in	function	lower.	You	can
look	at	a	corrected	version	in	the	file	4_8_hangman_full_solution.py.

	

Dictionaries
Lists	are	great	when	you	want	to	access	your	data	starting	at	the	beginning	and
working	your	way	through,	but	they	can	be	slow	and	inefficient	when	they	get
large	and	you	have	a	lot	of	data	to	trawl	through	(for	example,	looking	for	a

particular	entry).	It’s	a	bit	like	having	a	book	with	no	index	or	table	of	contents.
To	find	what	you	want,	you	have	to	read	through	the	whole	thing.

Dictionaries,	as	you	might	guess,	provide	a	more	efficient	means	of	accessing
a	data	structure	when	you	want	to	go	straight	to	an	item	of	interest.	When	you
use	a	dictionary,	you	associate	a	value	with	a	key.	Whenever	you	want	that
value,	you	ask	for	it	using	the	key.	It’s	a	little	bit	like	how	a	variable	name	has	a
value	associated	with	it;	however,	the	difference	is	that	with	a	dictionary,	the
keys	and	values	are	created	while	the	program	is	running.

Let’s	look	at	an	example:

This	example	is	concerned	with	recording	the	number	of	eggs	each	of	my
chickens	is	currently	laying.	Associated	with	each	chicken’s	name	is	a	number	of
eggs	per	week.	When	we	want	to	retrieve	the	value	for	one	of	the	hens	(let’s	say
Penny),	we	use	that	name	in	square	brackets	instead	of	the	index	number	that	we
would	use	with	a	list.	We	can	use	the	same	syntax	in	assignments	to	change	one
of	the	values.

For	example,	if	Bernadette	were	to	lay	an	egg,	we	could	update	our	records
by	doing	this:

You	may	have	noticed	that	when	the	dictionary	is	printed,	the	items	in	it	are
not	in	the	same	order	as	we	defined	them.	The	dictionary	does	not	keep	track	of
the	order	in	which	items	were	defined.	Also	note	that	although	we	have	used	a
string	as	the	key	and	a	number	as	the	value,	the	key	could	be	a	string,	a	number,
or	a	tuple	(see	the	next	section),	but	the	value	could	be	anything,	including	a	list
or	another	dictionary.

	

Tuples
On	the	face	of	it,	tuples	look	just	like	lists,	but	without	the	square	brackets.

Therefore,	we	can	define	and	access	a	tuple	like	this:	
However,	if	we	try	to	change	an	element	of	a	tuple,	we	get	an	error	message,

like	this	one:

The	reason	for	this	error	message	is	that	tuples	are	immutable,	meaning	that
you	cannot	change	them.	Strings	and	numbers	are	also	immutable.	Although	you
can	change	a	variable	to	refer	to	a	different	string,	number,	or	tuple,	you	cannot
change	the	number	itself.	On	the	other	hand,	if	the	variable	references	a	list,	you
could	alter	that	list	by	adding,	removing,	or	changing	elements	in	it.

So,	if	a	tuple	is	just	a	list	that	you	cannot	do	much	with,	you	might	be
wondering	why	you	would	want	to	use	one.	The	answer	is,	tuples	provide	a
useful	way	of	creating	a	temporary	collection	of	items.	Python	lets	you	do	a
couple	of	neat	tricks	using	tuples,	as	described	in	the	next	two	subsections.

Multiple	Assignment
To	assign	a	value	to	a	variable,	you	just	use	=	operator,	like	this:

a	=	1

Python	also	lets	you	do	multiple	assignments	in	a	single	line,	like	this:

Multiple	Return	Values
Sometimes	in	a	function,	you	want	to	return	more	than	one	value	at	a	time.	As	an

example,	imagine	a	function	that	takes	a	list	of	numbers	and	returns	the
minimum	and	the	maximum.	Here	is	such	an	example:	

This	method	of	finding	the	minimum	and	maximum	is	not	terribly	efficient,
but	it	is	a	simple	example.	The	list	is	sorted	and	then	we	take	the	first	and	last
numbers.	Note	that	numbers[-1]	returns	the	last	number	because	when	you
supply	a	negative	index	to	an	array	or	string,	Python	counts	backward	from	the
end	of	the	list	or	string.	Therefore,	the	position	-1	indicates	the	last	element,	-2
the	second	to	last,	and	so	on.

	

Exceptions
Python	uses	exceptions	to	flag	that	something	has	gone	wrong	in	your	program.
Errors	can	occur	in	any	number	of	ways	while	your	program	is	running.	A
common	way	we	have	already	discussed	is	when	you	try	to	access	an	element	of
a	list	or	string	that	is	outside	of	the	allowed	range.	Here’s	an	example:	

If	someone	gets	an	error	message	like	this	while	they	are	using	your	program,
they	will	find	it	confusing	to	say	the	least.	Therefore,	Python	provides	a
mechanism	for	intercepting	such	errors	and	allowing	you	to	handle	them	in	your

own	way:	
We	cover	exceptions	again	in	the	next	chapter,	where	you	will	learn	about	the

hierarchy	of	the	different	types	of	error	that	can	be	caught.

	

Summary	of	Functions
This	chapter	was	written	to	get	you	up	to	speed	with	the	most	important	features
of	Python	as	quickly	as	possible.	By	necessity,	we	have	glossed	over	a	few
things	and	left	a	few	things	out.	Therefore,	this	section	provides	a	reference	of
some	of	the	key	features	and	functions	available	for	the	main	types	we	have
discussed.	Treat	it	as	a	resource	you	can	refer	back	to	as	you	progress	though	the
book,	and	be	sure	to	try	out	some	of	the	functions	to	see	how	they	work.	There	is
no	need	to	go	through	everything	in	this	section—just	know	that	it	is	here	when
you	need	it.	Remember,	the	Python	Shell	is	your	friend.

For	full	details	of	everything	in	Python,	refer	to	http://docs.python.org/py3k.

Numbers
Table	4-1	shows	some	of	the	functions	you	can	use	with	numbers.

Table	4-1	Number	Functions

http://docs.python.org/py3k

Strings
String	constants	can	be	enclosed	either	with	single	quotes	(most	common)	or
with	double	quotes.	Double	quotes	are	useful	if	you	want	to	include	single
quotes	in	the	string,	like	this:	

On	some	occasions	you’ll	want	to	include	special	characters	such	as	end-of-
lines	and	tabs	into	a	string.	To	do	this,	you	use	what	are	called	escape
characters,	which	begin	with	a	backslash	(\)	character.	Here	are	the	only	ones
you	are	likely	to	need:	 	\t	Tab	character	 	\n	Newline	character	Table	4-2
shows	some	of	the	functions	you	can	use	with	strings.

Table	4-2	String	Functions

Lists
We	have	already	looked	at	most	of	the	features	of	lists.	Table	4-3	summarizes
these	features.

Table	4-3	List	Functions

Dictionaries
Table	4-4	details	a	few	things	about	dictionaries	that	you	should	know.

Table	4-4	Dictionary	Functions

Type	Conversions
We	have	already	discussed	the	situation	where	we	want	to	convert	a	number	into
a	string	so	that	we	can	append	it	to	another	string.	Python	contains	some	built-in
functions	for	converting	items	of	one	type	to	another,	as	detailed	in	Table	4-5.

Table	4-5	Type	Conversions

	

Summary
Many	things	in	Python	you	will	discover	gradually.	Therefore,	do	not	despair	at
the	thought	of	learning	all	these	commands.	Doing	so	is	really	not	necessary
because	you	can	always	search	for	Python	commands	or	look	them	up.

In	the	next	chapter,	we	take	the	next	step	and	see	how	Python	manages	object
orientation.

5
Modules,	Classes,	and	Methods

In	this	chapter,	we	discuss	how	to	make	and	use	our	own	modules,	like	the
random	module	we	used	in	Chapter	3.	We	also	discuss	how	Python	implements
object	orientation,	which	allows	programs	to	be	structured	into	classes,	each
responsible	for	its	own	behavior.	This	helps	to	keep	a	check	on	the	complexity	of
our	programs	and	generally	makes	them	easier	to	manage.	The	main
mechanisms	for	doing	this	are	classes	and	methods.	You	have	already	used	built-
in	classes	and	methods	in	earlier	chapters	without	necessarily	knowing	it.

	

Modules
Most	computer	languages	have	a	concept	like	modules	that	allows	you	to	create
a	group	of	functions	that	are	in	a	convenient	form	for	others	to	use—or	even	for
yourself	to	use	on	different	projects.

Python	does	this	grouping	of	functions	in	a	very	simple	and	elegant	way.
Essentially,	any	file	with	Python	code	in	it	can	be	thought	of	as	a	module	with
the	same	name	as	the	file.	However,	before	we	get	into	writing	our	own
modules,	let’s	look	at	how	we	use	the	modules	already	installed	with	Python.

Using	Modules
When	we	used	the	random	module	previously,	we	did	something	like	this:

The	first	thing	we	do	here	is	tell	Python	that	we	want	to	use	the	random
module	by	using	the	import	command.	Somewhere	in	the	Python	installation	is

a	file	called	random.py	that	contains	the	randint	and	choice	functions	as	well
as	some	other	functions.

With	so	many	modules	available	to	us,	there	is	a	real	danger	that	different
modules	might	have	functions	with	the	same	name.	In	such	a	case,	how	would
Python	know	which	one	to	use?	Fortunately,	we	do	not	have	to	worry	about	this
happening	because	we	have	imported	the	module,	and	none	of	the	functions	in
the	module	are	visible	unless	we	prepend	the	module	name	and	then	a	dot	onto
the	front	of	the	function	name.	Try	omitting	the	module	name,	like	this:

Having	to	put	the	module	name	in	front	of	every	call	to	a	function	that’s	used
a	lot	can	get	tedious.	Fortunately,	we	can	make	this	a	little	easier	by	adding	to
the	import	command	as	follows:

This	gives	the	module	a	local	name	within	our	program	of	just	r	rather	than
random,	which	saves	us	a	bit	of	typing.

If	you	are	certain	a	function	you	want	to	use	from	a	library	is	not	going	to
conflict	with	anything	in	your	program,	you	can	take	things	a	stage	further,	as
follows:

To	go	even	further,	you	can	import	everything	from	the	module	in	one	fell
swoop.	Unless	you	know	exactly	what	is	in	the	module,	however,	this	is	not
normally	a	good	idea,	but	you	can	do	it.	Here’s	how:

In	this	case,	the	asterisk	(*)	means	“everything.”

Useful	Python	Libraries

So	far	we	have	used	the	random	module,	but	other	modules	are	included	in
Python.	These	modules	are	often	called	Python’s	standard	library.	There	are	too
many	of	these	modules	to	list	in	full.	However,	you	can	always	find	a	complete
list	of	Python	modules	at	http://docs.python.org/release/3.1.5/library/index.html.
Here	are	some	of	the	most	useful	modules	you	should	take	a	look	at:

	string	String	utilities

	datetime	For	manipulating	dates	and	times

	math	Math	functions	(sin,	cos,	and	so	on)

	pickle	For	saving	and	restoring	data	structures	on	file	(see	Chapter	6)

	urllib.request	For	reading	web	pages	(see	Chapter	6)

	tkinter	For	creating	graphical	user	interfaces	(see	Chapter	7)

	

Object	Orientation
Object	orientation	has	much	in	common	with	modules.	It	shares	the	same	goals
of	trying	to	group	related	items	together	so	that	they	are	easy	to	maintain	and
find.	As	the	name	suggests,	object	orientation	is	about	objects.	We	have	been
unobtrusively	using	objects	already.	A	string	is	an	object,	for	example.	Thus,
when	we	type

>>>	'abc'.upper()

We	are	telling	the	string	'abc'	that	we	want	a	copy	of	it,	but	in	uppercase.	In
object-oriented	terms,	abc	is	an	instance	of	the	built-in	class	str	and	upper	is	a
method	on	the	class	str.

We	can	actually	find	out	the	class	of	an	object,	as	shown	here	(note	double
underscores	before	and	after	the	word	class):

	

http://docs.python.org/release/3.1.5/library/index.html

Defining	Classes
That’s	enough	of	other	people’s	classes;	let’s	make	some	of	our	own.	We	are
going	to	start	by	creating	a	class	that	does	the	job	of	converting	measurements
from	one	unit	to	another	by	multiplying	a	value	by	a	scale	factor.

We	will	give	the	class	the	catchy	name	ScaleConverter.	Here	is	the	listing
for	the	whole	class,	plus	a	few	lines	of	code	to	test	it:

This	requires	some	explanation.	The	first	line	is	fairly	obvious:	It	states	that
we	are	beginning	the	definition	of	a	class	called	ScaleConverter.	The	colon	(:)
on	the	end	indicates	that	all	that	follows	is	part	of	the	class	definition	until	we
get	back	to	an	indent	level	of	the	left	margin	again.

Inside	the	ScaleConverter,	we	can	see	what	look	like	three	function
definitions.	These	functions	belong	to	the	class;	they	cannot	be	used	except	via
an	instance	of	the	class.	These	kinds	of	functions	that	belong	to	a	class	are	called
methods.

The	first	method,	__init__,	looks	a	bit	strange—its	name	has	two	underscore
characters	on	either	side.	When	Python	is	creating	a	new	instance	of	a	class,	it
automatically	calls	the	method	__init__.	The	number	of	parameters	that
__init__	should	have	depends	on	how	many	parameters	are	supplied	when	an
instance	of	the	class	is	made.	To	unravel	that,	we	need	to	look	at	this	line	at	the
end	of	the	file:

c1	=	ScaleConverter('inches',	'mm',	25)

This	line	creates	a	new	instance	of	the	ScaleConverter,	specifying	what	the
units	being	converted	from	and	to	are,	as	well	as	the	scaling	factor.	The

__init__	method	must	have	all	these	parameters,	but	it	must	also	have	a
parameter	called	self	as	the	first	parameter:

The	parameter	self	refers	to	the	object	itself.	Now,	looking	at	the	body	of	the
__init__	method,	we	see	some	assignments:

Each	of	these	assignments	creates	a	variable	that	belongs	to	the	object	and	has
its	initial	value	set	from	the	parameters	passed	in	to	__init__.

To	recap,	when	we	create	a	new	ScaleConverter	by	typing	something	like

c1	=	ScaleConverter('inches',	'mm',	25)

Python	creates	a	new	instance	of	ScaleConverter	and	assigns	the	values
'inches',	'mm',	and	25	to	its	three	variables:	self.units_from,
self.units_to,	and	self.factor.

The	term	encapsulation	is	often	used	in	discussions	of	classes.	It	is	the	job	of
a	class	to	encapsulate	everything	to	do	with	the	class.	That	means	storing	data
(like	the	three	variables)	and	things	that	you	might	want	to	do	with	the	data	in
the	form	of	the	description	and	convert	methods.

The	first	of	these	(description)	takes	the	information	that	the	Converter
knows	about	its	units	and	creates	a	string	that	describes	it.	As	with	__init__,	all
methods	must	have	a	first	parameter	of	self.	The	method	will	probably	need	it
to	access	the	data	of	the	class	to	which	it	belongs.

Try	it	yourself	by	running	program	05_01_converter.py	and	then	typing	the
following	in	the	Python	Shell:

The	convert	method	has	two	parameters:	the	mandatory	self	parameter	and
a	parameter	called	value.	The	method	simply	returns	the	result	of	multiplying
the	value	passed	in	by	self.factor:

>>>	silly_converter.convert(3)

222

	

Inheritance
The	ScaleConverter	class	is	okay	for	units	of	length	and	things	like	that;
however,	it	would	not	work	for	something	like	converting	temperature	from
degrees	Celsius	(C)	to	degrees	Fahrenheit	(F).	The	formula	for	this	is	F	=	C	*	1.8
+	32.	There	is	both	a	scale	factor	(1.8)	and	an	offset	(32).

Let’s	create	a	class	called	ScaleAndOffsetConverter	that	is	just	like
ScaleConverter,	but	with	a	factor	as	well	as	an	offset.	One	way	to	do	this
would	simply	be	to	copy	the	whole	of	the	code	for	ScaleConverter	and	change
it	a	bit	by	adding	the	extra	variable.	It	might,	in	fact,	look	something	like	this:

Assuming	we	want	both	types	of	converters	in	the	program	we	are	writing,
then	this	is	a	bad	way	of	doing	it.	It’s	bad	because	we	are	repeating	code.	The
description	method	is	actually	identical,	and	__init__	is	almost	the	same.	A
much	better	way	is	to	use	something	called	inheritance.

The	idea	behind	inheritance	in	classes	is	that	when	you	want	a	specialized
version	of	a	class	that	already	exists,	you	inherit	all	the	parent	class’s	variables
and	methods	and	just	add	new	ones	or	override	the	ones	that	are	different.	Figure
5-1	shows	a	class	diagram	for	the	two	classes,	indicating	how
ScaleAndOffsetConverter	inherits	from	ScaleConverter,	adds	a	new	variable
(offset),	and	overrides	the	method	convert	(because	it	will	work	a	bit
differently).

Figure	5-1	An	example	of	using	inheritance.

Here	is	the	class	definition	for	ScaleAndOffsetConverter	using	inheritance:

The	first	thing	to	notice	is	that	the	class	definition	for
ScaleAndOffsetConverter	has	ScaleConverter	in	parentheses	immediately
after	it.	That	is	how	you	specify	the	parent	class	for	a	class.

The	__init__	method	for	the	new	“subclass”	of	ScaleConverter	first
invokes	the	__init__	method	of	ScaleConverter	before	defining	the	new
variable	offset.	The	convert	method	will	override	the	convert	method	in	the
parent	class	because	we	need	to	add	on	the	offset	for	this	kind	of	converter.	You
can	run	and	experiment	with	the	two	classes	together	by	running
05_03_converters_final.py:

It’s	a	simple	matter	to	convert	these	two	classes	into	a	module	that	we	can	use
in	other	programs.	In	fact,	we	will	use	this	module	in	Chapter	7,	where	we	attach
a	graphical	user	interface	to	it.

To	turn	this	file	into	a	module,	we	should	first	take	the	test	code	off	the	end	of
it	and	then	give	the	file	a	more	sensible	name.	Let’s	call	it	converters.py.	You
will	find	this	file	in	the	downloads	for	this	book.	The	module	must	be	in	the
same	directory	as	any	program	that	wants	to	use	it.

To	use	the	module	now,	just	do	this:

	

Summary
Lots	of	modules	are	available	for	Python,	and	some	are	specifically	for	the
Raspberry	Pi,	such	as	the	RPi.GPIO	library	for	controlling	the	GPIO	pins.	As	you
work	through	this	book,	you	will	encounter	various	modules.	You	will	also	find
that	as	the	programs	you	write	get	more	complex,	the	benefits	of	an	object-
oriented	approach	to	designing	and	coding	your	projects	will	keep	everything
more	manageable.

In	the	next	chapter,	we	look	at	using	files	and	the	Internet.

6
Files	and	the	Internet

Python	makes	it	easy	for	your	programs	to	use	files	and	connect	to	the
Internet.	You	can	read	data	from	files,	write	data	to	files,	and	fetch	content	from
the	Internet.	You	can	even	check	for	new	mail	and	tweet—all	from	your
program.

	

Files
When	you	run	a	Python	program,	any	values	you	have	in	variables	will	be	lost.
Files	provide	a	means	of	making	data	more	permanent.

Reading	Files
Python	makes	reading	the	contents	of	a	file	extremely	easy.	As	an	example,	we
can	convert	the	Hangman	program	from	Chapter	4	to	read	the	list	of	words	from
a	file	rather	than	have	them	fixed	in	the	program.

First	of	all,	start	a	new	file	in	IDLE	and	put	some	words	in	it,	one	per	line.
Then	save	the	file	with	the	name	hangman_words.txt	in	the	same	directory	as	the
Hangman	program	from	Chapter	4	(04_08_hangman_full.py).	Note	that	in	the
Save	dialog	you	will	have	to	change	the	file	type	to	.txt	(see	Figure	6-1).

Figure	6-1	Creating	a	text	file	in	IDLE.

Before	we	modify	the	Hangman	program	itself,	we	can	just	experiment	with
reading	the	file	in	the	Python	console.	Enter	the	following	into	the	console:

>>>	f	=	open('Python/hangman_words.txt')

Note	that	the	Python	console	has	a	current	directory	of	homepi,	so	the
directory	Python	(or	wherever	you	saved	the	file)	must	be	included.

Next	enter	the	following	into	the	Python	console:

I	told	you	it	was	easy!	All	we	need	to	do	to	add	this	file	to	the	Hangman
program	is	replace	the	line

with	the	following	lines:

The	line	f.close()	has	been	added.	You	should	always	call	the	close
command	when	you	are	done	with	a	file	to	free	up	operating	system	resources.
Leaving	a	file	open	can	lead	to	problems.

The	full	program	is	contained	in	the	file	06_01_hangman_file.py,	and	a
suitable	list	of	animal	names	can	be	found	in	the	file	hangman_words.txt.	This
program	does	nothing	to	check	that	the	file	exists	before	trying	to	read	it.	So,	if
the	file	isn’t	there,	we	get	an	error	that	looks	something	like	this:

To	make	this	a	bit	more	user	friendly,	the	file-reading	code	needs	to	be	inside
a	try	command,	like	this:

Python	will	try	to	open	the	file,	but	because	the	file	is	missing	it	will	not	be
able	to.	Therefore,	the	except	part	of	the	program	will	apply,	and	the	more
friendly	message	will	be	displayed.	Because	we	cannot	do	anything	without	a
list	of	words	to	guess,	there	is	no	point	in	continuing,	so	the	exit	command	is
used	to	quit.

In	writing	the	error	message,	we	have	repeated	the	name	of	the	file.	Sticking
strictly	to	the	Don’t	Repeat	Yourself	(DRY)	principle,	the	filename	should	be	put
in	a	variable,	as	shown	next.	That	way,	if	we	decide	to	use	a	different	file,	we
only	have	to	change	the	code	in	one	place.

A	modified	version	of	Hangman	with	this	code	in	it	can	be	found	in	the	file
06_02_hangman_file_try.py.

Reading	Big	Files
The	way	we	did	things	in	the	previous	section	is	fine	for	a	small	file	containing
some	words.	However,	if	we	were	reading	a	really	huge	file	(say,	several
megabytes),	then	two	things	would	happen.	First,	it	would	take	a	significant
amount	of	time	for	Python	to	read	all	the	data.	Second,	because	all	the	data	is
read	at	once,	at	least	as	much	memory	as	the	file	size	would	be	used,	and	for
truly	enormous	files,	that	might	result	in	Python	running	out	of	memory.

If	you	find	yourself	in	the	situation	where	you	are	reading	a	big	file,	you	need
to	think	about	how	you	are	going	to	handle	it.	For	example,	if	you	were
searching	a	file	for	a	particular	string,	you	could	just	read	one	line	of	the	file	at	a
time,	like	this:

When	the	function	readline	gets	to	the	last	line	of	the	file,	it	returns	an
empty	string	('').	Otherwise,	it	returns	the	contents	of	the	line,	including	the
end-of-line	character	(\n).	If	it	reads	a	blank	line	that	is	actually	just	a	gap
between	lines	and	not	the	end	of	the	file,	it	will	return	just	the	end-of-line
character	(\n).	By	the	program	only	reading	one	line	at	a	time,	the	memory	being
used	is	only	ever	equivalent	to	one	full	line.

If	the	file	is	not	broken	into	convenient	lines,	you	can	specify	an	argument	in
read	that	limits	the	number	of	characters	read.	For	example,	the	following	will
just	read	the	first	20	characters	of	a	file:

Writing	Files
Writing	files	is	almost	as	simple.	When	a	file	is	opened,	as	well	as	specifying	the
name	of	the	file	to	open,	you	can	also	specify	the	mode	in	which	to	open	the	file.
The	mode	is	represented	by	a	character,	and	if	no	mode	is	specified	it	is	assumed
to	be	r	for	read.	The	modes	are	as	follows:

	r	(read).

	w	(write)	Replaces	the	contents	of	any	existing	file	with	that	name.

	a	(append)	Appends	anything	to	be	written	onto	the	end	of	an	existing	file.

	r+	Opens	the	file	for	both	reading	and	writing	(not	often	used).

To	write	a	file,	you	open	it	with	a	second	parameter	of	'	w',	'	a',	or	'	r+'.
Here’s	an	example:

The	File	System
Occasionally,	you	will	need	to	do	some	file-system-type	operations	on	files
(moving	them,	copying	them,	and	so	on).	Python	uses	Linux	to	perform	these
actions,	but	provides	a	nice	Python-style	way	of	doing	them.	Many	of	these
functions	are	in	the	shutil	(shell	utility)	package.	There’s	a	number	of	subtle
variations	on	the	basic	copy	and	move	features	that	deal	with	file	permissions
and	metadata.	In	this	section,	we	just	deal	with	the	basic	operations.	You	can
refer	to	the	official	Python	documentation	for	any	other	functions
(http://docs.python.org/release/3.1.5/library).

Here’s	how	to	copy	a	file:

To	move	a	file,	either	to	change	its	name	or	move	it	to	a	different	directory:

shutil.move('test_copy.txt',	'test_dup.txt')

This	works	on	directories	as	well	as	files.	If	you	want	to	copy	an	entire	folder
—including	all	its	contents	and	its	content’s	contents—you	can	use	the	function
copytree.	The	rather	dangerous	function	rmtree,	on	the	other	hand,	will

http://docs.python.org/release/3.1.5/library

recursively	remove	a	directory	and	all	its	contents—exercise	extreme	caution
with	this	one!

The	nicest	way	of	finding	out	what	is	in	a	directory	is	via	globbing.	The
package	glob	allows	you	to	create	a	list	of	files	in	a	directory	by	specifying	a
wildcard	(*).	Here’s	an	example:

If	you	just	want	all	the	files	in	the	folder,	you	could	use	this:

	

Pickling
Pickling	involves	saving	the	contents	of	a	variable	to	a	file	in	such	a	way	that	the
file	can	be	later	loaded	to	get	the	original	value	back.	The	most	common	reason
for	wanting	to	do	this	is	to	save	data	between	runs	of	a	program.	As	an	example,
we	can	create	a	complex	list	containing	another	list	and	various	other	data
objects	and	then	pickle	it	into	a	file	called	mylist.pickle,	like	so:

If	you	find	the	file	and	open	it	in	an	editor	to	have	a	look,	you	will	see
something	cryptic	that	looks	like	this:

That	is	to	be	expected;	it	is	text,	but	it	is	not	meant	to	be	in	human-readable
form.	To	reconstruct	a	pickle	file	into	an	object,	here	is	what	you	do:

	

Internet
Most	applications	use	the	Internet	in	one	way	or	another,	even	if	it	is	just	to
check	whether	a	new	version	of	the	application	is	available	to	remind	the	user
about.	You	interact	with	a	web	server	by	sending	HTTP	(Hypertext	Transfer
Protocol)	requests	to	it.	The	web	server	then	sends	a	stream	of	text	back	as	a
response.	This	text	will	be	HTML	(Hypertext	Markup	Language),	the	language
used	to	create	web	pages.

Try	entering	the	following	code	into	the	Python	console.

Note	that	you	will	need	to	execute	the	read	line	as	soon	as	possible	after
opening	the	URL.	What	you	have	done	here	is	to	send	a	web	request	to
www.amazon.com,	asking	it	to	search	on	“raspberry	pi.”	This	has	sent	back	the
HTML	for	Amazon’s	web	page	that	would	display	(if	you	were	using	a	browser)
the	list	of	search	results.

If	you	look	carefully	at	the	structure	of	this	web	page,	you	can	see	that	you

http://www.amazon.com

can	use	it	to	provide	a	list	of	Raspberry	Pi–related	items	found	by	Amazon.	If
you	scroll	around	the	text,	you	will	find	some	lines	like	these:

They	key	thing	here	is	<div	class="productTitle">.	There	is	one	instance
of	this	before	each	of	the	search	results.	(It	helps	to	have	the	same	web	page
open	in	a	browser	for	comparison.)	What	you	want	to	do	is	copy	out	the	actual
title	text.	You	could	do	this	by	finding	the	position	of	the	text	productTitle,
counting	two	>	characters,	and	then	taking	the	text	from	that	position	until	the
next	<	character,	like	so:

When	you	run	this,	you	will	mostly	get	a	list	of	products.	If	you	really	get
into	this	kind	of	thing,	then	search	for	“Regular	Expressions	in	Python”	on	the
Internet.	Regular	expressions	are	almost	a	language	in	their	own	right;	they	are

used	for	doing	complex	searches	and	validations	of	text.	They	are	not	easy	to
learn	or	use,	but	they	can	simplify	tasks	like	this	one.

What	we	have	done	here	is	called	web	scraping,	and	it	is	not	ideal	for	a
number	of	reasons.	First	of	all,	organizations	often	do	not	like	people	“scraping”
their	web	pages	with	automated	programs.	Therefore,	you	may	get	a	warning	or
even	banned	from	some	sites.

Second,	this	action	is	very	dependent	on	the	structure	of	the	web	page.	One
tiny	change	on	the	website	and	everything	could	stop	working.	A	much	better
approach	is	to	look	for	an	official	web	service	interface	to	the	site.	Rather	than
returning	the	data	as	HTML,	these	services	return	much	more	easily	processed
data,	often	in	XML	or	JSON	format.

If	you	want	to	learn	more	about	how	to	do	this	kind	of	thing,	search	the
Internet	for	“web	services	in	Python.”

	

Summary
This	chapter	has	given	you	the	basics	of	how	to	use	files	and	access	web	pages
from	Python.	There	is	actually	a	lot	more	to	Python	and	the	Internet,	including
accessing	e-mail	and	other	Internet	protocols.	For	more	information	on	this,	have
a	look	at	the	Python	documentation	at
http://docs.python.org/release/3.1.5/library/internet.html.

http://docs.python.org/release/3.1.5/library/internet.html

7
Graphical	User	Interfaces

Everything	we	have	done	so	far	has	been	text	based.	In	fact,	our	Hangman
game	would	not	have	looked	out	of	place	on	a	1980s	home	computer.	This
chapter	shows	you	how	to	create	applications	with	a	proper	graphical	user
interface	(GUI).

	

Tkinter
Tkinter	is	the	Python	interface	to	the	Tk	GUI	system.	Tk	is	not	specific	to
Python;	there	are	interfaces	to	it	from	many	different	languages,	and	it	runs	on
pretty	much	any	operating	system,	including	Linux.	Tkinter	comes	with	Python,
so	there	is	no	need	to	install	anything.	It	is	also	the	most	commonly	used	tool	for
creating	a	GUI	for	Python.

	

Hello	World
Tradition	dictates	that	the	first	program	you	write	with	a	new	language	or	system
should	do	something	trivial,	just	to	show	it	works!	This	usually	means	making
the	program	display	a	message	of	“Hello	World.”	As	you’ll	recall,	we	already
did	this	for	Python	back	in	Chapter	3,	so	I’ll	make	no	apologies	for	starting	with
this	program:

Figure	7-1	shows	the	rather	unimpressive	application.

Figure	7-1	Hello	World	in	Tkinter.

You	don’t	need	to	worry	about	how	all	this	works.	You	do,	however,	need	to
know	that	you	must	assign	a	variable	to	the	object	Tk.	Here,	we	call	this	variable
root,	which	is	a	common	convention.	We	then	create	an	instance	of	the	class
Label,	whose	first	argument	is	root.	This	tells	Tkinter	that	the	label	belongs	to
it.	The	second	argument	specifies	the	text	to	display	in	the	label.	Finally,	the
method	pack	is	called	on	the	label.	This	tells	the	label	to	pack	itself	into	the
space	available.	The	method	pack	controls	the	layout	of	the	items	in	the	window.
Shortly,	we	will	use	an	alternative	type	of	layout	for	the	components	in	a	grid.

	

Temperature	Converter
To	get	started	with	Tkinter,	you’ll	gradually	build	up	a	simple	application	that
provides	a	GUI	for	temperature	conversion	(see	Figure	7-2).	This	application
will	use	the	converter	module	we	created	in	Chapter	5	to	do	the	calculation.

Figure	7-2	A	temperature	conversion	application.

Our	Hello	World	application,	despite	being	simple,	is	not	well	structured	and
would	not	lend	itself	well	to	a	more	complex	example.	It	is	normal	when
building	a	GUI	with	Tkinter	to	use	a	class	to	represent	each	application	window.
Therefore,	our	first	step	is	to	make	a	framework	in	which	to	slot	the	application,
starting	with	a	window	with	the	title	“Temp	Converter”	and	a	single	label:

We	have	added	a	class	to	the	program	called	App.	It	has	an	__init__	method
that	is	used	when	a	new	instance	of	App	is	created	in	the	following	line:

app	=	App(root)

We	pass	in	the	Tk	root	object	to	__init__	where	the	user	interface	is
constructed.

As	with	the	Hello	World	example,	we	are	using	a	Label,	but	this	time	rather
than	adding	the	label	to	the	root	Tk	object,	we	add	the	label	to	a	Frame	object	that
contains	the	label	and	other	items	that	will	eventually	make	up	the	window	for
our	application.	The	structure	of	the	user	interface	is	shown	in	Figure	7-3.
Eventually,	it	will	have	all	the	elements	shown.

Figure	7-3	Structure	of	the	user	interface.

The	frame	is	“packed”	into	the	root,	but	this	time	when	we	add	the	label,	we
use	the	method	grid	instead	of	pack.	This	allows	us	to	specify	a	grid	layout	for
the	parts	of	our	user	interface.	The	field	goes	at	position	0,	0	of	the	grid,	and	the
button	object	that	is	created	on	the	subsequent	line	is	put	on	the	second	row	of
the	grid	(row	1).	The	button	definition	also	specifies	a	“command”	to	be	run
when	the	button	is	clicked.	At	the	moment,	this	is	just	a	stub	that	prints	the
message	“Not	implemented.”

The	function	wm_title	sets	the	title	of	the	window.	Figure	7-4	shows	what
the	basic	user	interface	looks	like	at	this	point.

Figure	7-4	The	basic	user	interface	for	the	Temp	Converter	application.

The	next	step	is	to	fill	in	the	rest	of	the	user	interface.	We	need	an	“entry”	into
which	a	value	for	degrees	C	can	be	entered	and	two	more	labels.	We	need	one
permanent	label	that	just	reads	“deg	F”	and	a	label	to	the	right	of	it	where	the
converted	temperature	will	be	displayed.

Tkinter	has	a	special	way	of	linking	fields	on	the	user	interface	with	values.
Therefore,	when	we	need	to	get	or	set	the	value	entered	or	displayed	on	a	label
or	entry,	we	create	an	instance	of	a	special	variable	object.	This	comes	in	various
flavors,	and	the	most	common	is	StringVar.	However,	because	we	are	entering
and	displaying	numbers,	we	will	use	DoubleVar.	Double	means	a	double-
precision	floating-point	number.	This	is	just	like	a	float,	but	more	precise.

After	we	add	in	the	rest	of	the	user	interface	controls	and	the	variables	to
interact	with	them,	the	program	will	look	like	this:

The	first	DoubleVar	(c_var)	is	assigned	to	the	entry	by	specifying	a
textvariable	property	for	it.	This	means	that	the	entry	will	display	what	is	in
that	DoubleVar,	and	if	the	value	in	the	DoubleVar	is	changed,	the	field	display
will	automatically	update	to	show	the	new	value.	Also,	when	the	user	types
something	in	the	entry	field,	the	value	in	the	DoubleVar	will	change.	Note	that	a
new	label	of	“deg	F”	has	also	been	added.

The	second	DoubleVar	is	linked	to	another	label	that	will	eventually	display
the	result	of	the	calculation.	We	have	added	another	attribute	to	the	grid
command	that	lays	out	the	button.	Because	we	specify	columnspan=2,	the	button
will	stretch	across	both	columns.

If	you	run	the	program,	it	will	display	the	final	user	interface,	but	when	you
click	the	Convert	button,	the	message	“Not	Implemented”	will	be	written	to	the
Python	console.

The	last	step	is	to	replace	the	stubbed-out	“convert”	method	with	a	real
method	that	uses	the	converters	module	from	Chapter	5.	To	do	this,	we	need	to
import	the	module.	In	order	to	reduce	how	much	we	need	to	type,	we	will	import
everything,	as	follows:

from	converters	import	*

For	the	sake	of	efficiency,	it	is	better	if	we	create	a	single	“converter”	during

__init__	and	just	use	the	same	one	every	time	the	button	is	clicked.	Therefore,
we	create	a	variable	called	self.t_conv	to	reference	the	convertor.	The	convert
method	then	just	becomes	this:

Here	is	the	full	listing	of	the	program:

	

Other	GUI	Widgets
In	the	temperature	converter,	we	just	used	text	fields	(class	Entry)	and	labels
(class	Label).	As	you	would	expect,	you	can	build	lots	of	other	user	interface
controls	into	your	application.	Figure	7-5	shows	the	main	screen	of	a	“kitchen
sink”	application	that	illustrates	most	of	the	controls	you	can	use	in	Tkinter.	This
program	is	available	as	07_05_kitchen_sink.py.

Figure	7-5	A	“kitchen	sink”	application.

Checkbutton
The	Checkbox	widget	(first	column,	second	row	of	Figure	7-5)	is	created	like
this:

Checkbutton(frame,	text='Checkbutton')

This	line	of	code	just	creates	a	Checkbutton	with	a	label	next	to	it.	If	we	have
gone	to	the	effort	of	placing	a	check	box	on	the	window,	we’ll	also	want	a	way
of	finding	out	whether	or	not	it	is	checked.

The	way	to	do	this	is	to	use	a	special	“variable”	like	we	did	in	the	temperature
converter	example.	In	the	following	example,	we	use	a	StringVar,	but	if	the
values	of	onvalue	and	offvalue	were	numbers,	we	could	use	an	IntVar	instead.

Listbox
To	display	a	list	of	items	from	which	one	or	multiple	items	can	be	selected,	a
Listbox	is	used	(refer	to	the	center	of	Figure	7-5).	Here’s	an	example:

In	this	case,	it	just	displays	a	list	of	colors.	Each	string	has	to	be	added	to	the
list	individually.	The	word	END	indicates	that	the	item	should	go	at	the	end	of	the
list.

You	can	control	the	way	selections	are	made	on	the	Listbox	using	the
selectmode	property,	which	can	be	set	to	one	of	the	following:

	SINGLE	Only	one	selection	at	a	time.

	BROWSE	Similar	to	SINGLE,	but	allows	selection	using	the	mouse.	This
appears	to	be	indistinguishable	from	SINGLE	in	Tkinter	on	the	Pi.

	MULTIPLE	SHIFT-click	to	select	more	than	one	row.

	EXTENDED	Like	MULTIPLE,	but	also	allows	the	CTRL-SHIFT-click	selection	of
ranges.

Unlike	with	other	widgets	that	use	StringVar	or	some	other	type	of	special
variable	to	get	values	in	and	out,	to	find	out	which	items	of	the	Listbox	are
selected,	you	have	to	ask	it	using	the	method	curselection.	This	returns	a
collection	of	selection	indexes.	Thus,	if	the	first,	second,	and	fourth	items	in	the
list	are	selected,	you	will	get	a	list	like	this:

[0,	1,	3]

When	selectmode	is	SINGLE,	you	still	get	a	list	back,	but	with	just	one	value
in	it.

Spinbox
Spinboxes	provide	an	alternative	way	of	making	a	single	selection	from	a	list:

Spinbox(frame,	values=('a','b','c')).grid(row=3)

The	get	method	returns	the	currently	displayed	item	in	the	Spinbox,	not	its
selection	index.

Layouts
Laying	out	the	different	parts	of	your	application	so	that	everything	looks	good,
even	when	you	resize	the	window,	is	one	of	the	most	tricky	parts	of	building	a
GUI.

You	will	often	find	yourself	putting	one	kind	of	layout	inside	another.	For
example,	the	overall	shape	of	the	“kitchen	sink”	application	is	a	3×3	grid,	but
within	that	grid	is	another	frame	for	the	two	radio	buttons:

This	approach	is	quite	common,	and	it	is	a	good	idea	to	sketch	out	the	layout
of	your	controllers	on	paper	before	you	start	writing	the	code.

One	particular	problem	you	will	encounter	when	creating	a	GUI	is	controlling
what	happens	when	the	window	is	resized.	You	will	normally	want	to	keep	some
widgets	in	the	same	place	and	at	the	same	size,	while	allowing	other	widgets	to
expand.

As	an	example	of	this,	we	can	build	a	simple	window	like	the	one	shown	in
Figure	7-6,	which	has	a	Listbox	(on	the	left)	that	stays	the	same	size	and	an
expandable	message	area	(on	the	right)	that	expands	as	the	window	is	resized.

Figure	7-6	An	example	of	resizing	a	window.

The	code	for	this	is	shown	here:

The	key	to	understanding	such	layouts	is	the	use	of	the	sticky	attributes	of
the	components	to	decide	which	walls	of	their	grid	cell	they	should	stick	to.	To
control	which	of	the	columns	and	rows	expand	when	the	window	is	resized,	you
use	the	columnconfigure	and	rowconfigure	commands.	Figure	7-7	shows	the
arrangement	of	GUI	components	that	make	up	this	window.	The	lines	indicate
where	the	edge	of	a	user	interface	item	is	required	to	“stick”	to	its	containing
wall.

Figure	7-7	Layout	for	the	resizing	window	example.

Let’s	go	through	the	code	for	this	example	so	that	things	start	to	make	sense.
First,	the	line

frame.pack(fill=BOTH,	expand=1)

ensures	that	the	frame	will	fill	the	enclosing	root	window	so	that	if	the	root
window	changes	in	size,	so	will	the	frame.

Having	created	the	Listbox,	we	add	it	to	the	frame’s	grid	layout	using	the
following	line:

listbox.grid(row=0,	column=0,	sticky=W+E+N+S)

This	specifies	that	the	Listbox	should	go	in	position	row	0,	column	0,	but	then
the	sticky	attribute	says	that	the	west,	east,	north,	and	south	sides	of	the	Listbox
should	stay	connected	to	the	enclosing	grid.	The	constants	W,	E,	N,	and	S	are
numeric	constants	that	can	be	added	together	in	any	order.	The	Text	widget	is
added	to	the	frame’s	grid	in	just	the	same	way,	and	its	content	is	initialized	to	the
word	word	repeated	100	times.

The	final	part	to	the	puzzle	is	getting	the	resizing	behavior	we	want	for	a	text
area	that	expands	to	the	right	and	a	list	area	that	doesn’t.	To	do	this,	we	use	the
columnconfigure	and	rowconfigure	methods:

frame.columnconfigure(1,	weight=1)

frame.rowconfigure(0,	weight=1)

By	default,	rows	and	columns	do	not	expand	at	all	when	their	enclosing	user
interface	element	expands.	We	do	not	want	column	0	to	expand,	so	we	can	leave
that	alone.	However,	we	do	want	column	1	to	expand	to	the	right,	and	we	want
row	0	(the	only	row)	to	be	able	to	expand	downward.	We	do	this	by	giving	them
a	“weight”	using	the	columnconfigure	and	rowconfigure	methods.	If,	for
example,	we	had	multiple	columns	that	we	want	to	expand	evenly,	we	would
give	them	the	same	weight	(typically	1).	If,	however,	we	want	one	of	the
columns	to	expand	at	twice	the	rate	of	the	other,	we	would	give	it	twice	the
weight.	In	this	case,	we	only	have	one	column	and	one	row	that	we	need
expanding,	so	they	can	both	be	given	a	weight	of	1.

Scrollbar
If	you	shrink	down	the	window	for	the	program	07_06_resizing.py,	you	will
notice	that	there’s	no	scrollbar	to	access	text	that’s	hidden.	You	can	still	get	to
the	text,	but	clearly	a	scrollbar	would	help.

Scrollbars	are	widgets	in	their	own	right,	and	the	trick	for	making	them	work
with	something	like	a	Text,	Message,	or	Listbox	widget	is	to	lay	them	out	next	to
each	other	and	then	link	them	together.

Figure	7-8	shows	a	Text	widget	with	a	scrollbar.

Figure	7-8	Scrolling	a	Text	widget.

The	code	for	this	is	as	follows:

In	this	example,	we	use	the	pack	layout,	positioning	the	scrollbar	on	the	right
and	the	text	area	on	the	left.	The	fill	attribute	specifies	that	the	Text	widget	is
allowed	to	use	all	free	space	on	both	the	X	and	Y	dimensions.

To	link	the	scrollbar	to	the	Text	widget,	we	set	the	yscrollcommand	property
of	the	Text	widget	to	the	set	method	of	the	scrollbar.	Similarly,	the	command
attribute	of	the	scrollbar	is	set	to	text.yview.

	

Dialogs
It	is	sometimes	useful	to	pop	up	a	little	window	with	a	message	and	make	the
user	click	OK	before	they	can	do	anything	else	(see	Figure	7-9).	These	windows
are	called	modal	dialogs,	and	Tkinter	has	a	whole	range	of	them	in	the	package
tkinter.messagebox.

Figure	7-9	An	alert	dialog.

The	following	example	shows	how	to	display	such	an	alert.	As	well	as
showinfo,	tkinter.messagebox	also	has	the	functions	showwarning	and
showerror	that	work	just	the	same,	but	display	a	different	symbol	in	the	window.

Other	kinds	of	dialogs	can	be	found	in	the	packages	tkinter.colorchooser
and	tkinter.filedialog.

Color	Chooser
The	Color	Chooser	returns	a	color	as	separate	RGB	components	as	well	as	a
standard	hex	color	string	(see	Figure	7-10).

Figure	7-10	The	Color	Chooser.

This	code	returns	something	like	this:

rgb=(255.99609375,	92.359375,	116.453125)	hx=#ff5c74

File	Chooser
File	Choosers	can	be	found	in	the	package	tkinter.filedialog.	These	follow
exactly	the	same	pattern	as	the	other	dialogs	we	have	looked	at.

	

Menus
You	can	give	your	applications	menus.	As	an	example,	we	can	create	a	very
simple	application	with	an	entry	field	and	a	couple	of	menu	options	(see	Figure
7-11).

Figure	7-11	Menus.

The	first	step	is	to	create	a	root	Menu.	This	is	the	single	object	that	will
contain	all	the	menus	(File	and	Edit,	in	this	case,	along	with	all	the	menu
options).

menubar	=	Menu(root)

To	create	the	File	menu,	with	its	single	option,	Quit,	we	first	create	another
instance	of	Menu	and	then	add	a	command	for	Quit	and	finally	add	the	File	menu
to	the	root	Menu:

The	Edit	menu	is	created	in	just	the	same	way.	To	make	the	menus	appear	on

the	window,	we	have	to	use	the	following	command:

master.config(menu=menubar)

	

The	Canvas
In	the	next	chapter,	you’ll	get	a	brief	introduction	to	game	programming	using
pygame.	This	allows	all	sorts	of	nice	graphical	effects	to	be	achieved.	However,
if	you	just	need	to	create	simple	graphics,	such	as	drawing	shapes	or	plotting	line
graphs	on	the	screen,	you	can	use	Tkinter’s	Canvas	interface	instead	(see	Figure
7-12).

Figure	7-12	The	Canvas	widget.

The	Canvas	is	just	like	any	other	widget	you	can	add	to	a	window.	The
following	example	shows	how	to	draw	rectangles,	ovals,	and	lines:

You	can	draw	arcs,	images,	polygons,	and	text	in	a	similar	way.	Refer	to	an
online	Tkinter	reference	such	as	http://infohost.nmt.edu/tcc/help/pubs/tkinter/	for
more	information.

NOTE	The	origin	of	the	coordinates	is	the	top-left	corner	of	the	window,	and	the
coordinates	are	in	pixels.

	

Summary
In	a	book	this	size,	it	is	sometimes	only	possible	to	introduce	a	topic	and	get	you
started	on	the	right	path.	Once	you’ve	followed	the	examples	in	this	chapter,	run
them,	altered	them,	and	analyzed	what’s	going	on,	you	will	soon	find	yourself
hungry	for	more	information.	You	will	get	past	the	need	for	hand-holding	and
have	specific	ideas	of	what	you	want	to	write.	No	book	is	going	to	tell	you
exactly	how	to	build	the	project	you	have	in	your	head.	This	is	where	the
Internet	really	comes	into	its	own.

Good	online	references	to	take	what	you’ve	learned	further	can	be	found
here:

	www.pythonware.com/library/tkinter/introduction/

	http://infohost.nmt.edu/tcc/help/pubs/tkinter/

http://infohost.nmt.edu/tcc/help/pubs/tkinter/
http://www.pythonware.com/library/tkinter/introduction/
http://infohost.nmt.edu/tcc/help/pubs/tkinter/

8
Games	Programming

Clearly	a	single	chapter	is	not	going	to	make	you	an	expert	in	game
programming.	A	number	of	good	books	are	devoted	specifically	to	game
programming	in	Python,	such	as	Beginning	Game	Development	with	Python	and
Pygame,	by	Will	McGugan.	This	chapter	introduces	you	to	a	very	handy	library
called	pygame	and	gets	you	started	using	it	to	build	a	simple	game.

	

What	Is	Pygame?
Pygame	is	a	library	that	makes	it	easier	to	write	games	for	the	Raspberry	Pi—or
more	generally	for	any	computer	running	Python.	The	reason	why	a	library	is
useful	is	that	most	games	have	certain	elements	in	common,	and	you’ll
encounter	some	of	the	same	difficulties	when	writing	them.	A	library	such	as
pygame	takes	away	some	of	this	pain	because	someone	really	good	at	Python
and	game	programming	has	created	a	nice	little	package	to	make	it	easier	for	us
to	write	games.	In	particular,	pygame	helps	us	in	the	following	ways:

	We	can	draw	graphics	that	don’t	flicker.

	We	can	control	the	animation	so	that	it	runs	at	the	same	speed	regardless	of
whether	we	run	it	on	a	Raspberry	Pi	or	a	top-of-the-range	gaming	PC.

	We	can	catch	keyboard	and	mouse	events	to	control	the	game	play.

	

Coordinates
When	using	Tkinter,	the	positions	of	the	fields	to	be	displayed	in	a	window	are
set	using	a	grid	layout,	so	you	never	needed	to	worry	about	the	exact	positions	of

things.	In	pygame,	coordinates	are	specified	as	values	of	X	and	Y	relative	to	the
top	left	corner	of	the	window.	X	values	are	left	to	right	and	Y	are	from	top	to
bottom.	Figure	8-1	illustrates	the	pygame	coordinate	system.

Figure	8-1	The	pygame	coordinate	system.

Coordinates	are	often	written	as	a	tuple	with	the	X	value	first.	So	(100,	200)
refers	to	the	point	X=100,	Y=200.

	

Hello	Pygame
You	may	also	have	a	shortcut	on	your	desktop	called	“Python	Games.”	This
shortcut	runs	a	launcher	program	that	allows	you	to	run	some	Python	games.
However,	if	you	use	the	File	Explorer,	you	will	also	find	a	directory	in	your	root
directory	called	python_games.	If	you	look	in	here,	you	will	see	the	.py	files	for
the	games,	and	you	can	open	these	files	in	IDLE	to	have	a	look	at	how	others
have	written	their	games.

Figure	8-2	shows	what	a	Hello	World–type	application	looks	like	in	pygame,
and	here	is	the	code	listing	for	it:

Figure	8-2	Hello	Pygame.

This	is	a	very	crude	example,	and	it	doesn’t	have	any	way	of	exiting
gracefully.	Closing	the	Python	console	from	which	this	program	was	launched
should	kill	it	after	a	few	seconds.

Looking	at	the	code	for	this	example,	you	can	see	that	the	first	thing	we	do	is
import	pygame.	The	method	init	(short	for	initialize)	is	then	run	to	get	pygame
set	up	and	ready	to	use.	We	then	assign	a	variable	called	screen	using	the	line

screen	=	pygame.display.set_mode((200,	200))

which	creates	a	new	window	that’s	200	by	200	pixels.	We	then	fill	it	with	white
(the	color	255,	255,	255)	on	the	next	line	before	setting	a	caption	for	the	window
of	“Hello	Pygame.”

Games	use	graphics,	which	usually	means	using	images.	In	this	example,	we
read	an	image	file	into	pygame:

raspberry	=	pygame.image.load('raspberry.jpg').convert()

In	this	case,	the	image	is	a	file	called	raspberry.jpg,	which	is	included	along
with	all	the	other	programs	in	this	book	in	the	programs	download	section	on	the
book’s	website.	The	call	to	convert()	at	the	end	of	the	line	is	important	because
it	converts	the	image	into	an	efficient	internal	representation	that	enables	it	to	be
drawn	very	quickly,	which	is	vital	when	we	start	to	make	the	image	move	around
the	window.

Next,	we	draw	the	raspberry	image	on	the	screen	at	coordinates	100,	100
using	the	blit	command.	As	with	the	Tkinter	canvas	you	met	in	the	previous
chapter,	the	coordinates	start	with	0,	0	in	the	top-left	corner	of	the	screen.

Finally,	the	last	command	tells	pygame	to	update	the	display	so	that	we	get	to
see	the	image.

	

A	Raspberry	Game
To	show	how	pygame	can	be	used	to	make	a	simple	game,	we	are	going	to
gradually	build	up	a	game	where	we	catch	falling	raspberries	with	a	spoon.	The
raspberries	fall	at	different	speeds	and	must	be	caught	on	the	eating	end	of	the
spoon	before	they	hit	the	ground.	Figure	8-3	shows	the	finished	game	in	action.
It’s	crude	but	functional.	Hopefully,	you	will	take	this	game	and	improve	upon	it.

Figure	8-3	The	raspberry	game.

Following	the	Mouse
Let’s	start	developing	the	game	by	creating	the	main	screen	with	a	spoon	on	it
that	tracks	the	movements	of	the	mouse	left	to	right.	Load	the	following	program
into	IDLE:

The	basic	structure	of	our	Hello	World	program	is	still	there,	but	you	have
some	new	things	to	examine.	First	of	all,	there	are	some	more	imports.	The
import	for	pygame.locals	provides	us	access	to	useful	constants	such	as	QUIT,
which	we	will	use	to	detect	when	the	game	is	about	to	exit.	The	import	of	exit
from	sys	allows	us	to	quit	the	program	gracefully.

We	have	added	two	variables	(spoon_x	and	spoon_y)	to	hold	the	position	of
the	spoon.	Because	the	spoon	is	only	going	to	move	left	to	right,	spoon_y	will
never	change.

At	the	end	of	the	program	is	a	while	loop.	Each	time	around	the	loop,	we	first
check	for	a	QUIT	event	coming	from	the	pygame	system.	Events	occur	every
time	the	player	moves	the	mouse	or	presses	or	releases	a	key.	In	this	case,	we	are
only	interested	in	a	QUIT	event,	which	is	caused	by	someone	clicking	the
window	close	icon	in	the	top-right	corner	of	the	game	window.	We	could	choose
not	to	exit	immediately	here,	but	rather	prompt	the	player	to	see	whether	they
indeed	want	to	exit.	The	next	line	clears	the	screen	by	filling	it	with	the	color
white.

Next	comes	an	assignment	in	which	we	set	spoon_x	to	the	value	of	the	x
position	of	the	mouse.	Note	that	although	this	is	a	double	assignment,	we	do	not
care	about	the	y	position	of	the	mouse,	so	we	ignore	the	second	return	value	by
assigning	it	to	a	variable	called	ignore	that	we	then	ignore.	We	then	draw	the
spoon	on	the	screen	and	update	the	display.

Run	the	program.	The	spoon	should	now	follow	the	mouse	movements.

One	Raspberry
The	next	step	in	building	the	game	is	to	add	a	raspberry.	Later	on	we	will	expand
this	so	that	there	are	three	raspberries	falling	at	a	time,	but	starting	with	one	is
easier.	The	code	listing	for	this	can	be	found	in	the	file
08_03_rasp_game_one.py.

Here	are	the	changes	from	the	previous	version:

	Add	global	variables	for	the	position	of	the	raspberry	(raspberry_x	and
raspberry_y).

	Load	and	convert	the	image	raspberry.jpg.

	Separate	updating	the	spoon	into	its	own	function.

	Add	a	new	function	called	update_raspberry.

	Update	the	main	loop	to	use	the	new	functions.

You	should	already	be	familiar	with	the	first	two	items	in	this	list,	so	let’s
start	with	the	new	functions:

The	function	update_spoon	just	takes	the	code	we	had	in	the	main	loop	in
08_02_rasp_game_mouse	and	puts	it	in	a	function	of	its	own.	This	helps	to	keep
the	size	of	the	main	loop	down	so	that	it	is	easier	to	tell	what’s	going	on.

The	function	update_raspberry	changes	the	values	of	raspberry_x	and
raspberry_y.	It	adds	5	to	the	y	position	to	move	the	raspberry	down	the	screen
and	moves	the	x	position	by	a	random	amount	between	–5	and	+5.	This	makes
the	raspberries	wobble	unpredictably	during	their	descent.	However,	the
raspberries	will	eventually	fall	off	the	bottom	of	the	screen,	so	once	the	y
position	is	greater	than	the	position	of	the	spoon,	the	function	moves	them	back
up	to	the	top	and	to	a	new	random	x	position.

There	is	also	a	danger	that	the	raspberries	may	disappear	off	the	left	or	right
side	of	the	screen.	Therefore,	two	further	tests	check	that	the	raspberries	aren’t
too	near	the	edge	of	the	screen,	and	if	they	are	then	they	aren’t	allowed	to	go	any
further	left	or	right.

Here’s	the	new	main	loop	that	calls	these	new	functions:

Try	out	08_03_rasp_game_one.	You	will	see	a	basically	functional	program
that	looks	like	the	game	is	being	played.	However,	nothing	happens	when	you
catch	a	raspberry.

Catch	Detection	and	Scoring

We	are	now	going	to	add	a	message	area	to	display	the	score	(that	is,	the	number
of	raspberries	caught).	To	do	this,	we	must	be	able	to	detect	that	we	have	caught
a	raspberry.	The	extended	program	that	does	this	is	in	the	file
08_04_rasp_py_game_scoring.py.

The	main	changes	for	this	version	are	two	new	functions,	check_for_catch
and	display:

Note	that	because	the	condition	for	the	if	is	so	long,	we	use	the	line-
continuation	command	(\)	to	break	it	into	two	lines.

The	function	check_for_catch	adds	1	to	the	score	if	the	raspberry	has	fallen
as	far	as	the	spoon	(raspberry_y	>=	spoon_y)	and	the	x	position	of	the
raspberry	is	between	the	x	(left)	position	of	the	spoon	and	the	x	position	of	the
spoon	plus	50	(roughly	the	width	of	the	business	end	of	the	spoon).

Regardless	of	whether	the	raspberry	is	caught,	the	score	is	displayed	using	the
display	function.	The	check_for_catch	function	is	also	added	into	the	main
loop	as	one	more	thing	we	must	do	each	time	around	the	loop.

The	display	function	is	responsible	for	displaying	a	message	on	the	screen.

You	write	text	on	the	screen	in	pygame	by	creating	a	font,	in	this	case,	of	no
specific	font	family	but	of	a	36-point	size	and	then	create	a	text	object	by
rendering	the	contents	of	the	string	message	onto	the	font.	The	value	(10,	10,
10)	is	the	text	color.	The	end	result	contained	in	the	variable	text	can	then	be
blitted	onto	the	screen	in	the	usual	way.

Timing
You	may	have	noticed	that	nothing	in	this	program	controls	how	fast	the
raspberries	fall	from	the	sky.	We	are	lucky	in	that	they	fall	at	the	right	sort	of
speed	on	a	Raspberry	Pi.	However,	if	we	were	to	run	this	game	on	a	faster
computer,	they	would	probably	fly	past	far	too	fast	to	catch.

To	manage	the	speed,	pygame	has	a	built-in	clock	that	allows	us	to	slow
down	our	main	loop	by	just	the	right	amount	to	perform	a	certain	number	of
refreshes	per	second.	Unfortunately,	it	can’t	do	anything	to	speed	up	our	main
loop.	This	clock	is	very	easy	to	use;	you	simply	put	the	following	line
somewhere	before	the	main	loop:

clock	=	pygame.time.Clock()

This	creates	an	instance	of	the	clock.	To	achieve	the	necessary	slowing	of	the
main	loop,	put	the	following	line	somewhere	in	it	(usually	at	the	end):

clock.tick(30)

In	this	case,	we	use	a	value	of	30,	meaning	a	frame	rate	of	30	frames	per
second.	You	can	put	a	different	value	in	here,	but	the	human	eye	(and	brain)	do
not	register	any	improvement	in	quality	above	about	30	frames	per	second.

Lots	of	Raspberries
Our	program	is	starting	to	look	a	little	complex.	If	we	were	to	add	the	facility	for
more	than	one	raspberry	at	this	stage,	it	would	become	even	more	difficult	to	see
what	is	going	on.	We	are	therefore	going	to	perform	refactoring,	which	means
changing	a	perfectly	good	program	and	altering	its	structure	without	changing
what	it	actually	does	or	without	adding	any	features.	We	are	going	to	do	this	by
creating	a	class	called	Raspberry	to	do	all	the	things	we	need	a	raspberry	to	do.
This	still	works	with	just	one	raspberry,	but	will	make	working	with	more
raspberries	easier	later.	The	code	listing	for	this	stage	can	be	found	in	the	file
08_05_rasp_game_refactored.py.	Here’s	the	class	definition:

The	raspberry_x	and	raspberry_y	variables	just	become	variables	of	the
new	Raspberry	class.	Also,	when	an	instance	of	a	raspberry	is	created,	its	x
position	will	be	set	randomly.	The	old	update_raspberry	function	has	now
become	a	method	on	Raspberry	called	just	update.	Similarly,	the
check_for_catch	function	now	asks	the	raspberry	if	it	has	been	caught.

Having	defined	a	raspberry	class,	we	create	an	instance	of	it	like	this:

r	=	Raspberry()

Thus,	when	we	want	to	check	for	a	catch,	the	check_for_catch	just	asks	the
raspberry	like	this:

The	call	to	display	the	score	has	also	been	moved	out	of	the
check_for_catch	function	and	into	the	main	loop.	With	everything	now
working	just	as	it	did	before,	it	is	time	to	add	more	raspberries.	The	final	version
of	the	game	can	be	found	in	the	file	08_06_rasp_game_final.py.	It	is	listed	here
in	full:

To	create	multiple	raspberries,	the	single	variable	r	has	been	replaced	by	a
collection	called	rasps:

rasps	=	[Raspberry(),	Raspberry(),	Raspberry()]

This	creates	three	raspberries;	we	could	change	it	dynamically	while	the
program	is	running	by	adding	new	raspberries	to	the	list	(or	for	that	matter
removing	some).

We	now	need	to	make	just	a	couple	other	changes	to	deal	with	more	than	one
raspberry.	First	of	all,	in	the	check_for_catch	function,	we	now	need	to	loop
over	all	the	raspberries	and	ask	each	one	whether	it	has	been	caught	(rather	than
just	the	single	raspberry).	Second,	in	the	main	loop,	we	need	to	display	all	the
raspberries	by	looping	through	them	and	asking	each	to	update.

	

Summary
You	can	learn	plenty	more	about	pygame.	The	official	website	at
www.pygame.org	has	many	resources	and	sample	games	that	you	can	play	with
or	modify.

http://www.pygame.org

9
Interfacing	Hardware

The	Raspberry	Pi	has	a	double	row	of	pins	on	one	side	of	it.	These	pins	are
called	the	GPIO	(General	Purpose	Input/Output)	connector	and	allow	you	to
connect	electronic	hardware	to	the	Pi	as	an	alternative	to	using	the	USB	port.

The	maker	and	education	communities	have	created	many	expansion	and
prototyping	boards	you	can	attach	to	your	Pi	so	you	can	add	your	own
electronics.	This	includes	everything	from	simple	temperature	sensors	to	relays.
You	can	even	convert	your	Raspberry	Pi	into	a	controller	for	a	robot.

In	this	chapter,	we	explore	the	various	ways	of	connecting	the	Pi	to	electronic
devices	using	the	GPIO	connector.	Because	this	is	a	fast-moving	field,	it	is	fairly
certain	that	new	products	will	have	come	on	the	market	since	this	chapter	was
written;	therefore,	check	the	Internet	to	see	what	is	current.	I	have	tried	to	choose
a	representative	set	of	different	approaches	to	interfacing	hardware.	Therefore,
even	if	the	exact	same	versions	are	not	available,	you	will	at	least	get	a	flavor	of
what	is	out	there	and	how	to	use	it.

	

GPIO	Pin	Connections
The	Raspberry	Pi	2	and	Raspberry	Pi	model	B	are	shown	side-by-side	in	Figure
9-1a	and	9-1b.

Figure	9-1	Raspberry	Pi	models	2	and	B.

As	you	can	see,	the	newer	Raspberry	Pi	2	has	two	rows	of	20	pins,	making	40
pins	in	all,	whereas	the	original	Raspberry	Pi	has	just	26	pins	on	the	GPIO
header.	To	maintain	compatibility,	the	first	26	pins	of	the	Raspberry	Pi	2	are	the
same	as	the	pins	of	the	older	Raspberry	Pi.	In	other	words,	the	Raspberry	Pi	2
gives	you	some	extra	pins	to	use.

In	Figure	9-1,	the	GPIO	pins	of	both	boards	have	a	paper	GPIO	template	over
the	pins	that	labels	each	of	the	pins.	The	template	shown	in	Figure	9-1	is	the
Raspberry	Leaf.	Other	templates	are	also	available,	some	made	of	more	robust
PCB	material.	The	Raspberry	Leaf	is	available	from	Adafruit	and	elsewhere.

Pin	Functions
Figure	9-2a	shows	the	pin	names	for	the	Raspberry	Pi	2,	which	is	also	the	same
as	for	the	Raspberry	Pi	B+	and	A+	and	will	probably	remain	much	the	same	for
any	new	models	of	Raspberry	Pi	that	are	released.	Figure	9-2b	shows	the	pin
names	for	the	older	Raspberry	Pi	models	A	and	B.

Figure	9-2	Raspberry	Pi	40-pin	and	13-pin	GPIO	connectors.

The	pins	labeled	with	a	number	can	all	be	used	as	general-purpose	input/
output	pins.	In	other	words,	any	one	of	them	can	first	be	set	to	either	an	input	or
an	output.	If	the	pin	is	set	to	be	an	input,	you	can	then	test	to	see	whether	the	pin
is	set	to	a	“1”	(above	about	1.7V)	or	a	“0”	(below	1.7V).	Note	that	all	the	GPIO
pins	are	3.3V	pins	and	connecting	them	to	higher	voltages	than	that	could
damage	your	Raspberry	Pi.

When	set	to	be	an	output,	the	pin	can	be	either	0V	or	3.3V	(logical	0	or	1).
Pins	can	only	supply	or	sink	a	small	amount	of	current	(assume	3mA	to	be	safe),
so	they	can	just	light	an	LED	if	you	use	a	high-value	resistor	(say,	470Ω	or
higher).

Serial	Interface	Pins
You	will	notice	that	some	of	the	GPIO	pins	have	other	letters	after	their	names.
Those	pins	can	be	used	as	normal	GPIO	pins,	but	also	have	some	special
purpose.	For	example,	pins	2	and	3	have	the	extra	names	of	SDA	and	SCL.
These	are	the	clock	and	data	lines,	respectively,	for	a	serial	bus	type	called	I2C
that	is	popular	for	communicating	with	peripherals	such	as	temperature	sensors,
LCD	displays,	and	the	like.

GPIO	pins	14	and	15	also	double	as	the	TXD	and	RXT	(Transmit	and
Receive)	pins	for	the	Raspberry	Pi’s	serial	port.	Yet	another	type	of	serial
communication	is	possible	through	GPIO	9	to	11	(MISO,	MOSI,	and	SCLK).
This	type	of	serial	interface	is	called	SPI.

Power	Pins
Both	GPIO	connectors	are	sprinkled	with	pins	labeled	GND	(ground).	These
pins	are	all	connected	to	the	Raspberry	Pi’s	ground	or	zero	volts.	Other	power
pins	are	also	provided	for	3.3V	and	5V.	You	will	often	use	these	pins	when
hooking	up	external	electronics	to	the	Raspberry	Pi.

Hat	Pins
Two	special	pins,	only	available	on	the	40-pin	variant	of	the	Raspberry	Pi,	are
ID_SD	and	ID_SC.	These	are	reserved	for	an	advanced	interface	standard	that
you	can	use	with	the	Raspberry	Pi	2,	B+	and	A+.	The	standard	is	called	HAT
(Hardware	Attached	to	Top).	This	standard	does	not	in	any	way	stop	you	just
using	GPIO	pins	directly;	however,	interface	boards	that	conform	to	the	HAT
standard	can	call	themselves	HATs	and	have	the	advantage	that	a	HAT	must
contain	a	little	EEPROM	(Electrically	Erasable	Programmable	Read-Only
Memory)	chip	on	it	that	is	used	to	identify	the	HAT	so	that	ultimately	the
Raspberry	Pi	could	auto-install	necessary	software.	At	the	time	of	writing,	HATs
have	not	quite	met	that	level	of	sophistication,	but	the	idea	is	a	good	one.	The
pins	ID_SD	and	ID_SC	are	used	to	communicate	with	a	HAT	EEPROM.

	

Breadboarding	with	Jumper	Wires
Solderless	breadboard,	often	just	called	breadboard,	is	a	great	way	of	connecting
electronics	to	a	Raspberry	Pi.	There	is	no	soldering	to	do—you	just	push
electronic	components	into	the	breadboard	and	then	connect	them	to	your
Raspberry	Pi	GPIO	connector	using	either	special	jumper	wires	or	a	device	like
the	Pi	Cobbler	that	links	the	top	26	(or	all	40	GPIO	pins	if	present)	from	the
Raspberry	Pi	or	Pi	2	onto	the	breadboard.

	

Digital	Outputs
A	nice	starting	point	with	the	GPIO	connector	is	to	wire-up	an	LED	so	that	it	can
be	turned	on	and	off	from	a	Python	program.	To	wire-up	the	LED	you	will	need
the	following	items.

It’s	often	easier	to	buy	an	electronics	starter	kit	that	has	the	common	parts
listed	above.	The	MonkMakes	Electronics	Starter	Kit	for	Raspberry	Pi	contains
all	the	parts	listed	above	and	a	Raspberry	Leaf	for	easy	pin	identification.	You
will	also	find	starter	kits	on	eBay	that	contain	a	wide	range	of	components,	to	get
you	started.

Warning:	Keeping	Your	Pi	Safe
The	Raspberry	Pi	has	relatively	delicate	GPIO	pins.	It	is	possible	to	burn	out
individual	GPIO	pins	and	even	destroy	the	whole	Raspberry	Pi	if	you	are	not
careful.

Always	check	over	the	wiring	carefully	before	connecting	your	electronics
to	your	Raspberry	Pi.	In	particular,	make	sure	that	you	always	use	a	resistor	of
at	least	470Ω	between	a	GPIO	pin	and	an	LED.	The	resistor	limits	the	current
through	the	LED	to	a	safe	level	for	the	Raspberry	Pi.

Step	1.	Put	the	Resistor	on	the	Breadboard
Breadboard	is	arranged	in	rows	and	columns.	The	rows	are	numbered	1	to	30
and	the	columns	“a”	to	“j”	(in	two	banks).	All	the	holes	for	a	particular	row	in	a
bank	(“a”	to	“e”	or	“f”	to	“j”)	are	connected	together	behind	the	plastic	front	of
the	breadboard	by	a	metal	clip.	So	putting	two	component	legs	into	the	same	row
connects	them	together	electrically.

Start	by	putting	the	legs	of	the	resistor	both	on	column	“c”	between	rows	1
and	6	as	shown	in	Figure	9-3.	It	does	not	matter	which	way	around	the	resistor

goes.

Figure	9-3	The	resistor	on	breadboard.

Step	2.	Put	the	LED	on	the	Breadboard
The	LED	has	one	leg	longer	than	the	other.	The	longer	leg	is	the	positive	leg	and
this	should	go	to	row	6,	column	“e”	to	connect	to	the	bottom	lead	of	the	resistor.
The	other	leg	of	the	LED	(the	shorter	lead)	plugs	into	row	8,	column	“e”	as
shown	in	Figure	9-4.

Figure	9-4	The	resistor	and	LED	on	breadboard.

Step	3.	Connect	the	Breadboard	to	the	GPIO	Pins
You	will	need	two	female-to-male	jumper	wires.	The	male	end	will	plug	into	the
breadboard	and	the	female	end	onto	a	GPIO	pin.	Pick	different	colors.	I	used
black	and	orange.	Plug	one	lead	(let’s	say	its	orange)	from	row	1,	column	“a”	to
pin	GPIO18	of	the	GPIO	header.	This	pin	is	the	sixth	pin	down	on	the	right	(see
Figure	9-2).	If	you	have	a	GPIO	template	like	the	Raspberry	Leaf,	it’s	a	lot
easier	to	see	where	to	make	the	connection.

The	other	jumper	wire	needs	to	go	from	row	8,	column	“a”	of	the	breadboard
to	one	of	the	GND	connections	on	the	GPIO	connector	of	the	Pi.	I	used	the	GND
pin	that	is	the	third	pin	down	on	the	right	hand	side	of	the	PGIO	connector	as
shown	in	Figure	9-5.

Figure	9-5	The	breadboard	and	Pi	connected.

Now	that	the	LED	is	connected,	you	can	try	out	some	Python	to	turn	it	on	and
off.	While	you	are	trying	this	out,	you	will	just	enter	commands	in	the	Python	3
console.	However,	access	to	the	GPIO	pins	requires	superuser	privileges.	That	is,
any	Python	programs	or	interactive	commands	that	control	the	GPIO	pins	must
be	prefixed	with	“sudo”	(superuser	do).	So	rather	than	use	the	IDLE	Python
console,	type	the	following	command	into	the	LXTerminal:

To	access	the	GPIO	pins,	you	need	to	import	a	library	called	RPi.GPIO.	This
library	is	included	with	Raspbian,	so	you	do	not	need	to	install	it.	You	just	need
to	import	it	into	the	console	by	entering	the	command	below:

The	RPi.GPIO	library	allows	you	to	specify	the	pins	that	you	want	to	use,
either	by	their	numbers	as	shown	in	Figure	9-2	or	by	the	physical	position	of	the
pin.	Most	people	use	the	pin	names	rather	than	their	position,	and	the	command
below	tells	RPi.GPIO	that	we	want	to	use	the	names	of	the	pins	rather	than	their
position.	BCM	is	an	abbreviation	of	Broadcom,	the	manufacturer	of	the	Pi’s

processor.

GPIO.setmode(GPIO.BCM)

The	LED	is	connected	to	pin	GPIO	18,	but	at	the	moment	the	RPi.GPIO
library	does	not	know	if	this	pin	should	be	an	input	or	output.	The	following	line
specifies	that	it	should	be	an	output:

GPIO.setup(18,	GPIO.OUT)

At	last,	we	get	to	the	part	where	you	can	turn	the	LED	on	using	the	command
below:

GPIO.output(18,	True)

As	soon	as	you	hit	return	on	that	command,	the	LED	should	light.	To	turn	the
LED	off	again,	type	the	following	command:

GPIO.output(18,	False)

Try	this	out	a	few	times,	because	it’s	fun.	It’s	actually	quite	significant,
because	although	you	are	only	controlling	a	humble	LED,	it	could	be	a	relay
switching	a	domestic	light	on	and	off	and	the	Python	could	be	a	home
automation	program.	An	important	link	between	hardware	and	software	has	been
established.

An	alternative	to	starting	a	Python	3	console	directly,	as	you	did	above,	would
be	to	start	IDLE	as	a	superuser,	so	that	you	can	then	edit	and	run	programs	as
superuser.	Start	IDLE	on	Python	3	as	superuser	by	entering	the	following
command	into	LXTerminal:

$	sudo	idle3

Open	the	program	09_blink.py	from	the	book’s	example	code.	The	program
should	be	in	the	directory	homepi/prog_pi_ed2	if	you	followed	the	instructions
for	installing	all	the	example	programs	back	in	Chapter	3.	Run	the	program
using	the	“Run	Module”	menu	option	on	IDLE	and	you	will	see	the	LED	start	to
blink	on	and	off.	When	you	have	had	enough,	select	the	IDLE	console	window
and	press	CTRL-C.

Here	is	the	listing	for	09_blink.py.

The	program	starts	the	same	way	as	our	earlier	experiments,	by	importing	the
library,	and	also	the	“time”	library.	A	variable	(led_pin)	is	used	for	the	pin	to	be
used	to	drive	the	LED.	This	is	then	initialized	to	be	an	output.

The	program	uses	a	try/finally	block,	so	that	when	the	program	exits
following	a	CTRL-C	induced	exception,	the	function	GPIO.cleanup()	is	called.
The	“cleanup”	function	sets	all	the	GPIO	pins	back	to	a	harmless	input	state,
reducing	the	chance	of	damaging	the	Pi	if	one	of	the	pins	set	to	be	an	output
should	accidentally	short	to	a	power	pin	or	other	output.

Inside	the	“try”	block	is	a	loop	that	continues	until	the	program	exits.	This
first	turns	on	led_pin,	delays	for	half	a	second,	and	then	turns	it	off	again	and
waits	another	half	second	before	repeating	the	whole	loop	again.

	

Analog	Outputs
Don’t	dismantle	the	LED	and	resistor	breadboard	just	yet,	because	as	well	as
turning	the	LED	on	and	off,	you	can	also	vary	its	brightness.

Pulse	Width	Modulation
The	method	used	by	the	RPi.GPIO	library	to	produce	an	“analog”	output	is
called	Pulse	Width	Modulation	(PWM).	The	GPIO	pin	actually	uses	a	digital
output,	but	generates	a	series	of	pulses.	The	width	of	the	pulses	are	varied.	The
larger	the	proportion	of	the	time	that	the	pulse	stays	high,	the	greater	the	power
delivered	to	the	output,	and	hence	the	brighter	the	LED	as	shown	in	Figure	9-6.

Figure	9-6	Pulse	Width	Modulation.

The	proportion	of	the	time	that	the	pulse	is	HIGH	is	called	the	duty	and	this
is	often	expressed	as	a	percentage.

Even	though	the	LED	is	actually	turning	on	and	off,	it	happens	so	fast	that
your	eye	is	just	fooled	into	thinking	the	LED	is	brighter	or	dimmer	depending
on	the	length	of	the	PWM	pulse.

With	the	LED	connected	to	pin	18	as	you	did	in	Figure	9-5,	open	the	program
09_pwm.py	in	IDLE	and	then	run	it.	Use	IDLE3	for	Python	3	and	run	it	as
superuser	as	you	did	in	the	previous	section.	The	first	thing	the	program	does	is
to	prompt	you	for	a	brightness	level	between	1	and	100	as	shown	below:

Try	a	few	different	values	and	see	how	the	brightness	of	the	LED	changes.
Setting	up	a	GPIO	output	to	do	PWM	is	a	little	different	from	using	it	as	a

simple	on/off	digital	output.

After	setting	the	pin	to	be	an	output	as	normal,	you	then	need	to	create	a
PWM	channel	using	the	line	below:

pwm_led	=	GPIO.PWM(led_pin,	500)

The	second	parameter	(500)	specifies	the	number	of	pulses	per	second.
Having	created	the	channel,	PWM	is	now	started	at	100	percent	on	using	the
line:

pwm_led.start(100)

The	main	loop	prompts	you	to	enter	the	brightness	as	a	string	and	then
converts	it	to	a	number	before	calling	ChangeDutyCycle	to	set	the	new	level	of
brightness	for	the	LED.

	

Digital	Inputs
Where	an	LED	is	the	most	likely	thing	to	be	connected	to	a	digital	output,	a
switch	is	probably	the	most	likely	thing	to	be	connected	to	a	digital	input.

To	experiment	with	a	switch	as	a	digital	input,	you	don’t	actually	need	a
switch,	or	breadboard,	you	can	just	experiment	with	a	pair	of	female-to-male
jumper	wires.	Connect	one	wire	to	GND	and	the	other	to	pin	23	as	shown	in
Figure	9-7.

Figure	9-7	Jumper	wires	as	a	switch.

Open	the	program	09_switch.py	in	IDLE	and	then	run	it.	When	you	touch	the
wires	together,	a	new	line	of	output	should	appear	in	the	console	as	shown	in
Figure	9-8.

Figure	9-8	The	console	monitoring	a	digital	input.

Here	is	the	listing	for	this	program.

As	with	the	previous	blink	program,	there	are	the	usual	imports	and	the	pin
identification	mode	is	set	to	BCM.	A	different	pin	is	used	for	the	switch.	You
could	use	pin	18	if	you	prefer,	but	by	using	23,	it	leaves	open	the	possibility	of
keeping	the	LED	connected	to	pin	18	and	combining	both	inputs	and	outputs.

This	time,	the	switch_pin	is	set	to	be	an	input	and	the	optional	third	parameter
(pull_up_down)	is	set	to	PUD_UP	(Pull	Up	Down	UP).	This	enables	an	internal
pull-up	resistor	on	pin	23	that	keeps	the	input	pulled	up	high	unless	it	is

connected	to	GND	which	overrides	this.
The	“while”	loop	is	no	longer	in	a	try/finally	block	because	the	pin	is	used	as

an	input	and	therefore	does	not	really	need	“cleaning	up”	like	an	output	does.
The	“while”	loop	contains	an	“if”	statement	that	reads	the	digital	input	pin	23
using	GPIO.input.	If	this	is	false,	then	it	means	that	the	input	is	connected	to
GND	(the	wires	are	connected)	and	the	message	is	displayed.

The	time.sleep	command	ensures	that	the	messages	don’t	go	shooting	off	the
screen	when	the	wires	are	pressed,	by	introducing	a	one-fifth	of	a	second	delay
before	anything	else	happens	in	the	loop.

	

Analog	Inputs
Even	the	Raspberry	Pi	2	does	not	have	analog	inputs,	that	is	inputs	that	can
measure	a	voltage	rather	than	simply	tell	if	it	is	above	or	below	a	threshold	that
indicates	the	input	is	high	or	low.	A	lot	of	analog	sensors	provide	an	output
voltage	that	is	proportional	to	the	thing	they	are	measuring.	So,	for	example,	a
temperature	sensor	chip	such	as	the	TMP36	has	an	output	pin	whose	voltage
varies	depending	on	the	temperature.	The	only	way	to	use	such	a	sensor	with	the
Raspberry	Pi	is	to	use	an	ADC	(Analog	to	Digital	Convertor)	chip.

However,	many	sensors	are	resistive.	That	is,	their	resistance	changes	with
the	thing	they	are	measuring.	A	thermistor’s	resistance	changes	with	temperature
and	a	photoresistor’s	resistance	varies	depending	on	the	amount	of	light	falling
on	it.	Other	types	of	resistive	sensors	include	gas	sensors,	strain	sensors,	and
even	resistive	touch	screens.	These	“resistive”	sensors	can	be	used	with	a
Raspberry	Pi	by	timing	how	long	it	takes	for	current	to	flow	through	the	resistive
sensor	and	charge	up	a	capacitor	to	the	extent	that	it	crosses	the	threshold	of	a
digital	input	so	that	the	input	counts	as	HIGH	rather	than	LOW.

Hardware
You	can	try	out	this	approach	on	breadboard	using	a	photoresistor.	To	do	this,
you	will	need	the	following	items:

	A	half-sized	breadboard	(Adafruit	PID:	64)

	Female-to-male	jumper	wires	(Adafruit	PID:	1954)

	Photoresistor	(1kΩ)	(Adafruit	PID:	161)

	Two	1kΩ	resistors	(MCM	Electronics	PID:	66-1K)

	330nF	capacitor	(MCM	Electronics	PID:	31-11864)

All	these	parts	are	also	included	in	the	MonkMakes	Electronics	Starter	Kit	for
Raspberry	Pi.

Figure	9-9	shows	the	wiring	diagram	for	the	breadboard.	A	photograph	of	the
breadboard	is	shown	in	Figure	9-10.

Figure	9-9	The	breadboard	layout	for	light	measurement.

Figure	9-10	Measuring	light	intensity	with	a	photoresistor.

None	of	the	components	need	to	be	a	particular	way	around.	It	can	help	to
keep	things	neat	if	you	shorten	the	length	of	the	resistor	legs	before	you	fit	them
onto	the	breadboard.

The	Software
The	example	code	for	reading	resistance	this	way	can	be	found	in	the	file
09_resistance.py.	When	you	run	this	program	you	will	see	output	something	like
this	in	the	console:

The	increase	in	the	resistance	readings	from	around	3600	to	11000	occurred
when	I	covered	the	photoresistor	with	my	hand	to	make	it	darker.

You	could	swap	the	photoresistor	for	any	other	type	of	resistor	or	sensor	to
measure	its	value.	Although	this	method	is	not	very	accurate,	it	can	still	be	pretty
useful.

The	code	for	this	is	a	little	complex,	so	rather	than	list	it	all	in	one	it’s	broken
up	into	sections.	You	may	also	find	it	helpful	to	have	the	file	open	in	IDLE	to
refer	to.

After	the	imports,	two	variables	C	and	R1	are	defined.	These	are	the	values	of
capacitor	and	charging	resistor	(top	resistor	on	the	breadboard).	So,	you	can
adjust	these	values	if	you	are	using	a	different	value	of	resistor	or	capacitor.

Two	pins	are	used	to	control	the	charging	of	the	capacitor,	one	to	charge	it
and	one	to	discharge	it.	These	are	called	a_pin	and	b_pin	respectively.	See	the
sidebar	“Measuring	Resistance”	on	how	the	charging	and	discharging	is	used	to
measure	resistance.

Measuring	Resistance
To	understand	how	this	works,	it	can	help	to	think	of	the	capacitor	as	a	water
tank,	the	wires	as	pipes	and	the	resistors,	and	the	photoresistor	as	faucets	that
restrict	the	flow	of	water	in	the	pipes.

First	the	capacitor	is	emptied	of	charge	(the	tank	is	emptied	of	water)	by
setting	pin	23	to	be	an	output	and	low.	The	charge	then	drains	out	of	the
capacitor	through	R2.	R2	is	there	to	make	sure	the	charge	doesn’t	flow	out	and
into	the	Pi	so	fast	that	it	damages	the	GPIO	pin.

Next,	pin	23	is	effectively	disconnected	by	setting	it	to	be	an	input	and	pin
18	is	set	high	(3.3V)	so	that	the	capacitor	starts	to	fill	through	both	the	fixed
resistor	R1	and	the	photoresistor.	The	voltage	at	the	capacitor	will	then	start	to
rise	as	the	capacitor	fills.	The	capacitor	will	fill	faster	the	lower	the	resistance

of	the	photoresistor.	This	voltage	is	now	monitored	by	pin	23	now	acting	as	an
input	until	the	input	goes	high	at	about	1.65V	(half	of	3.3V).	The	time	taken	for
this	to	happen	is	measured	and	can	then	be	used	to	calculate	the	resistance	of
the	photoresistor,	which	is	an	indication	of	the	light	level.

Figure	9-11a	shows	an	oscilloscope	trace	of	the	voltage	at	pin	23	as	the
capacitor	charges.	The	horizontal	axis	is	time	and	the	vertical	axis	volts.	Figure
9-11b	shows	the	same	thing	but	with	the	photoresistor	covered	so	that	it	is
darker	(and	higher	resistance).	As	you	can	see,	it	takes	perhaps	three	times	as
long	for	the	voltage	to	rise	in	the	dark.

Figure	9-11	(a)	Voltage	at	pin	23	light.	(b)	Voltage	at	pin	23	dark.

And	now	we	get	to	the	tricky	math	part.	When	a	capacitor	is	charged	through
a	resistor,	the	time	taken	for	the	capacitor	voltage	to	rise	to	0.632	of	the
charging	voltage	is	called	the	time	constant	(T).	By	the	miracle	of	physics,	T	is
also	equal	to	the	value	of	resistance	times	the	capacitance.

So,	you	can	work	out	T	from	the	time	taken	to	charge	to	1.65V	(t)	using	the
equation:

T	=	t	×	3.3	×	0.632

This	is	because	we	know	how	long	it	got	to	1.65V	we	just	need	to	scale	that
up	a	bit	to	see	how	long	it	would	take	to	get	to	3.33.3	×	0.632	=	2.09V.	You
now	have	a	definite	value	for	T.

Now	you	also	know	that:

T	=	(R	+	R1)	×	C

where	R	is	the	photoresistor’s	resistance.
Rearranging	these,	you	get:

R	=	(T/C)	-	R1

Hey,	presto!	You	have	the	value	of	resistance	of	the	photoresistor.

The	“discharge”	function	is	responsible	for	emptying	the	capacitor	of	charge.
This	sets	a_pin	to	be	an	input,	so	that	it	is	effectively	disconnected,	and	sets
b_pin	to	be	a	LOW	output	so	that	the	capacitor	discharges	through	R2.	It	then
waits	for	1/100	of	a	second	which	is	long	enough	for	it	to	empty.

The	function	“charge_time”	is	responsible	for	seeing	how	long	it	takes	for	the
capacitor	to	charge	to	1.85V.	First,	it	sets	b_pin	to	an	input	to	disconnect	it	and
then	sets	a_pin	to	be	a	HIGH	output	(3.3V).	It	then	records	the	starting	time	in
the	variable	“t1”.	It	then	waits	in	a	“while”	loop	until	b_pin	exceeds	1.85V.	It
then	records	the	end	time	in	t2	and	returns	the	difference	multiplied	by	a	million
to	give	a	result	in	microseconds.

The	function	“analog_read”	combines	the	discharging	and	measurement	of
charge	time	into	one	function	that	returns	the	number	of	microseconds	taken	to
charge	C.

The	function	“read_resistance”	is	used	to	convert	this	reading	of	time	into
resistance.	This	uses	the	same	math	as	described	in	the	sidebar.

The	main	loop	of	the	program	repeatedly	reads	the	resistance	and	prints	it	to
the	console.

	

Breadboarding	with	the	Pi	Cobbler
The	Pi	Cobbler	from	Adafruit	(www.adafruit.com/products/914)	comes	as	a	kit
that	must	be	soldered	together.	The	soldering	is	pretty	straightforward,	and	once
everything	is	assembled,	you	will	have	a	board	with	26	pins	coming	out	of	the
bottom	that	can	be	attached	to	a	solderless	breadboard	(see	Figure	9-12).	On	top
of	the	board	is	a	26-pin	socket	to	which	a	26-way	ribbon	cable	lead	(also
supplied)	can	be	used	to	link	the	Raspberry	Pi	GPIO	connector	to	the	Cobbler.
The	Cobbler	will	ONLY	work	with	the	older	26-pin	GPIO	Raspberry	Pi.	If,	you
have	a	“+”	or	Pi	2	with	40	pins	then	the	Cobbler	Plus	has	all	40.

Figure	9-12	The	Pi	Cobbler	and	breadboard.

http://www.adafruit.com/products/914

If	you	are	using	a	Cobbler,	you	will	probably	also	need	some	male	to	male
jumper	wires	to	connect	components	from	one	part	of	the	breadboard	to	another.

	

Prototyping	Boards
Solderless	breadboard	is	great	for	prototyping	a	project,	but	it	is	all	too	easy	for
the	jumper	wires	or	components	to	become	disconnected	from	the	breadboard.
So,	at	some	point,	you	will	probably	want	to	make	your	design	more	permanent
with	a	soldered	solution.	Rather	than	have	to	create	your	own	printed	circuit
boards	(PCBs),	you	can	make	use	of	general-purpose	PCBs	called	prototyping
boards,	of	which	there	are	many	types.

Perma-Proto
If	you	use	a	Pi	Cobbler,	then	transferring	your	design	to	an	Adafruit	Perma-Proto
(Figure	9-13)	is	a	breeze	because	the	Perma-Proto	has	the	same	layout	as
solderless	breadboard	with	a	socket	at	the	top	of	the	breadboard	into	which	the
same	cable	as	a	Cobbler	can	be	plugged.

Figure	9-13	Perma-Proto	boards.

It’s	available	in	two	sizes,	so	you	can	use	the	big	board	if	you	have	a	more
ambitious	project	that	needs	the	space.

Perma-Proto	Pi	HAT
The	HAT	(Hardware	Attached	to	Top)	standard	uses	an	EEPROM	to	identify	the
hardware.	The	Perma-Proto	Pi	HAT	(also	from	Adafruit)	fits	on	top	of	the
Raspberry	Pi	GPIO	connector	but	optionally	includes	an	EEPROM	soldered
onto	the	board	(Figure	9-14).

Figure	9-14	A	Perma-Proto	Pi	HAT.

If	you	want	to	make	your	project	conform	to	the	HAT	standard,	then	you	will
find	instructions	on	doing	this	and	even	tools	for	writing	identity	data	onto	the
EEPROM	on	GitHub	here:	https://github.com/raspberrypi/hats.

	

Other	Boards	and	HATs
There	are	many	other	interesting	boards	and	HATs	available	for	the	Raspberry	Pi

https://github.com/raspberrypi/hats

and	the	list	is	increasing	in	length	all	of	the	time.	Some	interesting	board
manufacturers	to	look	for	are	Adafruit	and	Pimoroni	who	make	and	sell	a	wide
variety	of	boards	including	displays,	motor	controllers,	and	touch	sensing.	You
will	also	meet	a	motor	controller	board	(the	RasPiRobot	Board	v3)	in	Chapter
12.

	

Arduino	and	the	Pi
Although	the	Raspberry	Pi	can	be	used	like	a	microcontroller	to	drive	motors
and	such,	this	is	not	really	what	it	was	designed	for.	As	such,	the	GPIO	pins
cannot	supply	much	in	the	way	of	drive	current	and	are	somewhat	delicate	and
intolerant	of	electrical	abuse.

Arduino	boards,	on	the	other	hand,	are	much	more	rugged	and	designed	to	be
used	to	control	electronic	devices	(see	Figure	9-15).	What	is	more,	they	have
analog	inputs	that	can	measure	a	voltage	from,	say,	a	temperature	sensor.

Figure	9-15	An	Arduino	board	connected	to	a	Raspberry	Pi.

Arduino	boards	are	designed	to	allow	communication	with	a	host	computer
using	USB,	and	there	is	no	reason	why	this	host	shouldn’t	be	a	Raspberry	Pi.
This	means	that	the	Arduino	takes	care	of	all	the	electronics	and	the	Raspberry
Pi	sends	it	commands	or	listens	for	incoming	requests	from	the	Arduino.

If	you	have	an	Arduino,	you	can	try	out	the	following	simple	example,	which
allows	you	to	send	messages	to	the	Arduino	to	blink	its	built-in	LED	on	and	off
while	at	the	same	time	receiving	incoming	messages	from	the	Arduino.	Once
you	can	do	that,	it	is	easy	to	adapt	either	the	Arduino	sketch	or	the	Python
program	on	the	Raspberry	Pi	to	carry	out	more	complex	tasks.

This	example	assumes	you	are	familiar	with	the	Arduino.	If	you	are	not,	you
may	want	to	read	some	of	my	other	books	on	the	Arduino,	including
Programming	Arduino:	Getting	Started	with	Sketches	and	30	Arduino	Projects
for	the	Evil	Genius.

Arduino	and	Pi	Talk
To	get	the	Arduino	and	Pi	to	talk,	we	are	going	to	connect	them	using	a	USB
port	on	the	Raspberry	Pi.	Because	the	Arduino	only	draws	about	50mA	and	in
this	case	has	no	external	electronics	attached	to	it,	it	can	be	powered	by	the	Pi.

The	Arduino	Software
All	you	need	to	do	is	load	the	following	Arduino	sketch	onto	the	Arduino.	You
can	do	this	with	your	regular	computer	or	Raspberry	Pi.	The	following	sketch	is
available	in	the	downloads	package	and	is	called	PiTest.ino:

This	very	simple	sketch	contains	just	three	functions.	The	“setup”	function
initializes	serial	communications	and	sets	pin	13	on	the	LED	to	be	an	output.
This	pin	is	attached	to	the	LED	built	into	the	Arduino.	The	“loop”	function	is
invoked	repeatedly	until	the	Arduino	is	powered	down.	It	first	sends	the	message
“Hello	Pi”	to	the	Raspberry	Pi	and	then	checks	to	see	whether	there	is	any
incoming	communication	from	the	Pi.	If	there	is	(it	expects	a	single	digit),	it
flashes	the	LED	on	and	off	many	times	using	the	“flash”	function.

The	Raspberry	Pi	Software
The	Python	code	to	talk	to	the	Arduino	is	even	more	simple	and	can	just	be
typed	into	the	Python	console.

This	opens	the	USB	serial	connection	with	the	Arduino	at	the	same	baud	rate
of	9600.	Now	you	need	to	start	a	loop	listening	for	messages	from	the	Arduino:

You	will	need	to	hit	enter	twice	after	you	type	the	second	line.	Messages
should	now	start	to	appear!	Press	CTRL-C	to	interrupt	the	messages	coming
from	the	Arduino.

Now	type	the	following	into	the	Python	console	to	send	a	message	the	other
way,	from	the	Raspberry	Pi	to	the	Arduino:

The	LED	labeled	L	on	the	Arduino	should	blink	rapidly	five	times.

	

Summary
In	this	chapter	we	looked	at	just	some	of	the	wide	range	of	ways	of	adding
electronics	to	our	Raspberry	Pi	projects.	In	the	next	three	chapters,	we	create
projects	using	breadboard	and	jumper	wires,	and	the	RaspiRobot	Board	v3	as	the

basis	for	a	small	roving	robot.

10
LED	Fader	Project

This	is	the	first	of	three	projects	designed	to	make	use	of	Python	and	the	GPIO
pins	to	control	the	color	of	light	coming	from	an	RGB	LED.	The	project
combines	the	use	of	the	Tkinter	library	to	create	a	user	interface	and	the
RPi.GPIO	libraries’	PWM	feature	to	control	the	brightness	of	the	three	channels
of	the	LED	(red,	green,	and	blue).

Figure	10-1	shows	the	LED	hardware	built	onto	breadboard	and	Figure	10-2,
the	user	interface	used	to	control	it	on	your	Raspberry	Pi.

Figure	10-1	An	RGB	LED	connected	to	a	Raspberry	Pi.

Figure	10-2	A	Tkinter	user	interface	for	controlling	the	LED.

	

What	You	Need
To	build	this	project,	you	will	need	the	following	parts.	Suggested	part	suppliers
are	listed,	but	you	can	also	find	these	parts	elsewhere	on	the	Internet.

The	Electronics	Starter	Kit	for	Raspberry	Pi	from	MonkMakes	includes	all
these	parts.	You	can	also	use	a	Raspberry	Squid,	an	RGB	LED	with	built-in
resistors	that	can	be	plugged	directly	into	the	GPIO	pins	of	the	Raspberry	Pi.
You	can	find	instructions	on	making	your	own	Raspberry	Squid	here:
https://github.com/simonmonk/squid.

	

Hardware	Assembly
The	breadboard	layout	for	the	project	is	shown	in	Figure	10-3.

https://github.com/simonmonk/squid

Figure	10-3	The	breadboard	layout	for	an	RGB	LED.

It	will	keep	things	neater	and	prevent	any	accidental	connections	between	the
leads	if	you	shorten	the	resistor	leads	so	that	they	lie	flat	against	the	surface	of
the	breadboard.

The	RGB	LED	will	have	one	leg	that	is	longer	than	the	others.	This	is	the
“common”	lead.	When	you	buy	your	RGB	LED,	make	sure	that	it	is	specified	as
being	“common	cathode.”	This	means	that	the	negative	terminals	of	each	of	the
red,	green,	and	blue	LED	elements	are	all	connected	together.

	

Software
The	software	for	this	project	has	some	similarity	with	the	experiment	in	Chapter
9,	where	you	controlled	the	brightness	of	a	single	red	LED	by	typing	in	a	value
between	0	and	100.	However,	in	this	project,	instead	of	entering	a	number,
Tkinter	is	used	to	create	a	user	interface	that	has	three	sliders	in	a	window.	Each
slider	controls	the	brightness	of	a	different	channel,	allowing	you	to	mix	red,
green,	and	blue	light	to	make	any	color.

Run	the	program	(as	superuser)	and	after	a	few	moments	the	window	shown
in	Figure	10-2	will	appear.	Try	adjusting	the	sliders	and	notice	how	the	LED
color	changes.	LEDs	with	a	diffuse	body	mix	the	colors	much	better	than	those
with	a	clear	body.

You	can	find	the	program	in	the	book	examples	as	the	file	10_RGB_LED.py.
Rather	than	list	the	whole	program	here,	open	it	up	in	IDLE	while	I	go	through
the	code	in	sections.

The	program	starts	with	the	usual	imports	of	Tkinter,	RPi.GPIO,	and	time.

Next,	the	three	GPIO	pins	needed	to	control	the	red,	green,	and	blue	channels
are	set	as	outputs	and	then	three	PWM	channels	(pwmRed,	pwnGreen,	and
pwmBlue)	are	initialized	in	the	same	way	as	the	led	brightness	experiment	in
Chapter	9.

The	user	interface	uses	a	grid	layout	to	set	the	positions	of	the	three	labels
inside	the	__init__	method:	

The	labels	are	all	in	column	0,	on	rows	0,	1,	and	2.	The	sliders	are

implemented	by	the	Tkinter	Scale	class.

Each	Scale	object	is	constructed	with	“from_”	(with	underscore	after	the
name)	and	“to”	parameters	that	specify	the	range	of	values	that	the	scale	can	set,
so	when	the	slider	is	far	left,	the	value	will	be	0	and	when	it’s	all	the	way	over	to
the	right,	the	value	will	be	100.

Each	of	the	scales	also	has	a	“command”	attribute	where	the	name	of	a
method	is	specified.	This	method	will	be	called	whenever	the	slider	position	is
changed.	For	the	red	channel	this	method	is	called	“updateRed.”

Whenever	the	update	function	for	a	particular	channel	is	changed,	it	just
changes	the	PWM	duty	of	that	channel	to	the	new	slider	value	of	between	0	and
100.

The	remainder	of	the	code	initializes	the	window	and	starts	the	Tkinter	main
loop	running.	Note	that	the	loop	is	set	running	inside	a	try/finally	block	so	that	if
the	window	is	closed,	the	GPIO	pins	are	automatically	cleaned	up	(set	to	inputs).

	

Summary
This	is	a	simple	project	to	get	you	started	with	some	GPIO	programming.	In	the
next	chapter,	you	will	use	a	display	module	that	uses	a	I2C	serial	interface	to
connect	to	the	Raspberry	Pi	and	make	a	digital	clock.

11
Prototyping	Project	(Clock)

In	this	chapter,	we	will	build	what	can	only	be	seen	as	a	grossly	over-
engineered	LED	digital	clock.	We	will	be	using	a	Raspberry	Pi,	a	breadboard,
and	a	four-digit	LED	display	(see	Figure	11-1).

Figure	11-1	LED	clock	using	the	Raspberry	Pi.

In	the	first	phase	of	the	design,	the	project	will	just	display	the	time.
However,	a	second	phase	extends	the	project	by	adding	a	push	button	that,	when
pressed,	switches	the	display	mode	between	displaying	hours/minutes,	seconds,

and	the	date.

	

What	You	Need
To	build	this	project,	you	will	need	the	following	parts.	Suggested	part	suppliers
are	listed,	but	you	can	also	find	these	parts	elsewhere	on	the	Internet.

The	breadboard,	jumper	wires,	and	switch	are	all	included	in	the	Electronics
Starter	Kit	for	Raspberry	Pi	by	MonkMakes.

	

Hardware	Assembly
The	LED	display	module	is	supplied	as	a	kit	that	must	be	soldered	together
before	it	can	be	used.	It	is	easy	to	solder,	and	detailed	step-by-step	instructions
for	building	it	can	be	found	on	the	Adafruit	website.	The	module	has	pins	that
just	push	into	the	holes	on	the	breadboard.

The	display	has	just	four	pins	(VCC,	GND,	SDA,	and	SCL)	when	it	is
plugged	into	the	breadboard;	align	it	so	that	the	VCC	pin	is	on	row	1	of	the
breadboard.

Underneath	the	holes	of	the	solderless	breadboard	are	strips	of	connectors,
linking	the	five	holes	of	a	particular	row	together.	Note	that	because	the	board	is
on	its	side,	the	rows	actually	run	vertically	in	Figure	11-2.

Figure	11-2	Breadboard	layout.

Figure	11-2	shows	the	solderless	breadboard	with	the	four	pins	of	the	display
at	one	end	of	the	breadboard.

The	connections	that	need	to	be	made	are	listed	here:

The	color	scheme	shown	in	this	table	is	only	a	suggestion;	however,	it	is
common	to	use	red	for	a	positive	supply	and	black	or	blue	for	the	ground
connection.

CAUTION	In	this	project,	we	are	connecting	a	5V	display	module	to	the
Raspberry	Pi,	which	generally	uses	3.3V.	We	can	only	safely	do	this	because
the	display	module	used	here	only	acts	as	a	“slave”	device	and	hence	only
listens	on	the	SDA	and	SCL	lines.	Other	I2C	devices	may	act	as	a	master
device,	and	if	they	are	5V,	there	is	a	good	chance	this	could	damage	your	Pi.
Therefore,	before	you	connect	any	I2C	device	to	your	Raspberry	Pi,	make

sure	you	understand	what	you	are	doing.

Turn	on	the	Raspberry	Pi.	If	the	usual	LEDs	do	not	light,	turn	it	off
immediately	and	check	all	the	wiring.

	

Software
Everything	is	connected,	and	the	Raspberry	Pi	has	booted	up.	However,	the
display	is	still	blank	because	we	have	not	yet	written	any	software	to	use	it.	We
are	going	to	start	with	a	simple	clock	that	just	displays	the	Raspberry	Pi’s	system
time.	The	Raspberry	Pi	does	not	have	a	real-time	clock	to	tell	it	the	time.
However,	it	will	automatically	pick	up	the	time	from	a	network	time	server	if	it
is	connected	to	the	Internet.

The	Raspberry	Pi	displays	the	time	in	the	bottom-right	corner	of	the	screen.	If
the	Pi	is	not	connected	to	the	Internet,	you	can	set	the	time	manually	using	the
following	command:

sudo	date	-s	"Aug	24	12:15"

However,	you	will	have	to	do	this	every	time	you	reboot.	Therefore,	it	is	far
better	to	have	your	Raspberry	Pi	connected	to	the	Internet.

If	you	are	using	the	network	time,	you	may	find	that	the	minutes	are	correct
but	that	the	hour	is	wrong.	This	probably	means	that	your	Raspberry	Pi	does
now	know	which	time	zone	it	is	in.	This	can	be	fixed	by	using	the	following
command,	which	opens	up	a	window	where	you	can	select	your	continent	and
then	the	city	for	the	time	zone	you	require:

sudo	raspi-config

Select	the	option	“Set	up	language	and	regional	settings”	and	then	“Change
timezone.”

At	the	time	of	writing,	in	order	to	use	the	I2C	bus	that	the	display	uses,	the
Raspbian	distribution	requires	that	you	configure	a	few	things	to	make	the	I2C
bus	accessible	to	the	Python	program	we	are	going	to	write.	It	is	likely	that	later
releases	of	Raspbian	(and	other	distributions)	will	have	the	port	already
configured	so	that	the	following	commands	are	not	necessary.	However,	for	the
moment,	here	is	what	you	need	to	do:

sudo	apt-get	install	python-smbus

Start	raspi-config	again	and	this	time	select	the	option	“Advanced	Options”
and	then	“I2C”	and	enable	I2C	support.

So	now	that	the	Raspberry	Pi	knows	the	correct	time	and	the	I2C	bus	is
available,	we	can	write	a	Python	program	that	sends	the	time	to	the	display.
Adafruit	has	created	some	Python	code	to	go	with	their	I2C	displays,	in	fact	they
have	a	very	useful	collection	of	all	their	Raspberry	Pi	code	that	you	can
download	from	Github	using	the	command:

This	will	bring	down	quite	a	large	chunk	of	interesting	code.	If	you	work	your
way	down	the	folder	tree	to	"Adafruit_LEDBackpack"	you	will	find	a	file	in
there	called	"ex_7segment_clock.py".	Run	this	program	using	the	command:

$sudo	python	ex_7segment_clock.py

The	LEDs	should	light	up	and	display	the	correct	time.
Here	is	the	listing	for	the	code:

The	program	is	nice	and	simple.	The	loop	continues	forever,	getting	the	hour
and	minute	and	showing	them	in	the	correct	places	on	the	display.

	

Phase	Two
Having	got	the	basic	display	working,	let’s	expand	both	the	hardware	and
software	by	adding	a	button	that	changes	the	mode	of	the	display,	cycling
between	the	time	in	hours	and	minutes,	the	seconds,	and	the	date.	Figure	11-3
shows	the	breadboard	with	the	switch	added	as	well	as	two	new	patch	wires.
Note	that	we	are	just	adding	to	the	layout	of	the	first	phase	by	adding	the	button;
nothing	else	is	changed.

Figure	11-3	Adding	a	button	to	the	design.

NOTE	Shut	down	and	power	off	your	Pi	before	you	start	making	changes	on	the
breadboard.

The	button	has	four	leads	and	must	be	placed	in	the	right	position;	otherwise,
the	switch	will	appear	to	be	closed	all	the	time.	The	leads	should	emerge	from
the	sides	facing	the	top	and	bottom	of	Figure	11-3.	Don’t	worry	if	you	have	the
switch	positioned	in	the	wrong	way—it	will	not	damage	anything,	but	the
display	will	continuously	change	mode	without	the	button	being	pressed.

Two	new	wires	are	needed	to	connect	the	switch.	One	goes	from	one	lead	of
the	switch	(refer	to	Figure	11-3)	to	the	GND	connection	of	the	display.	The	other
lead	goes	to	the	connection	labeled	#18	on	the	GPIO	connector.	The	effect	is	that
whenever	the	button	on	the	switch	is	pressed,	the	Raspberry	Pi’s	GPIO	18	pin
will	be	connected	to	ground.

You	can	find	the	updated	software	in	the	file	11_01_fancy_clock.py	and	listed
here:

This	program	needs	a	lot	of	the	Adafruit	to	work.	So,	copy	your	file
10_01_fancy_clock.p	to	the	directory	where	you	found	the	Adafruit	example
‘ex_7segment_clock.py’.

The	first	thing	to	notice	is	that	because	we	need	access	to	GPIO	pin	18	to	see
whether	the	button	is	pressed,	we	need	to	use	the	RPi.GPIO	library.	We	used	this
as	an	example	of	installing	a	module	back	in	Chapter	5.

We	set	the	switch	pin	to	be	an	input	using	the	following	command:

GPIO.setup(switch_pin,	io.IN,	pull_up_down=io.PUD_UP)

This	command	also	turns	on	an	internal	pull-up	resistor	that	ensures	the	input
is	always	at	3.3V	(high)	unless	the	switch	is	pressed	to	override	it	and	pull	it	low.

Most	of	what	was	in	the	loop	has	been	separated	into	a	function	called
display_time.	Also,	two	new	functions	have	been	added:	display_seconds	and
display_date.	These	are	fairly	self-explanatory.

One	point	of	interest	is	that	display_date	displays	the	date	in	U.S.	format.	If
you	want	to	change	this	to	the	international	format,	where	the	day	of	the	month
comes	before	the	month,	change	the	digit	numbers	in	the	writeDigit	commands
in	display_date.

To	keep	track	of	which	mode	we	are	in,	we	have	added	some	new	variables	in
the	following	lines:

time_mode,	seconds_mode,	date_mode	=	range(3)

disp_mode	=	time_mode

The	first	of	these	lines	gives	each	of	the	three	variables	a	different	number.
The	second	line	sets	the	disp_mode	variable	to	the	value	of	time_mode,	which
we	use	later	in	the	main	loop.

The	main	loop	has	been	changed	to	determine	whether	the	button	is	pressed.
If	it	is,	then	1	is	added	to	disp_mode	to	cycle	the	display	mode.	If	the	display
mode	has	reached	the	end,	it	is	set	back	to	time_mode.

Finally,	the	if	blocks	that	follow	select	the	appropriate	display	function,
depending	on	the	mode,	and	then	call	it.

	

Summary
This	project’s	hardware	can	quite	easily	be	adapted	to	other	uses.	You	could,	for
example,	present	all	sorts	of	things	on	the	display	by	modifying	the	program.
Here	are	some	ideas:

	Your	current	Internet	bandwidth	(speed)

	The	number	of	e-mails	in	your	inbox

	A	countdown	of	the	days	remaining	in	the	year

	The	number	of	visitors	to	a	website

In	the	next	chapter,	we	build	another	hardware	project—this	time	a	roving
robot—using	the	Raspberry	Pi	as	its	brain.

12
Raspberry	Pi	Robot

In	this	chapter,	you	will	learn	how	to	use	the	Raspberry	Pi	with	a	motor	chassis
to	make	two	versions	of	a	roving	vehicle.	The	first	version	(Figure	12-1)	is
autonomous	and	will	move	around	in	a	random	manner,	detecting	obstacles	in
front	of	it	using	an	ultrasonic	rangefinder.	The	second	version	of	the	project	uses
the	same	hardware,	but	allows	the	robot	to	be	controlled	using	a	web	interface.

Figure	12-1	A	Raspberry	Pi	robot.

	

What	You	Need
To	build	this	project,	you	will	need	the	following	parts.	Suggested	part	suppliers
are	listed,	but	you	can	also	find	these	parts	elsewhere	on	the	Internet.

If	you	are	just	planning	to	make	the	web-controlled	version	of	the	project,
then	you	don’t	need	the	rangefinder.

Robot	chassis	are	quite	common	on	eBay.	Look	for	something	with	6V
motors.	The	kits	often	come	with	a	battery	holder	that	accepts	4	×	AA	batteries.
Unfortunately,	this	is	not	quite	enough	to	reliably	power	the	Raspberry	Pi	and
motors.	A	dip	in	the	voltage	as	the	motors	start	is	likely	to	cause	the	Raspberry
Pi	to	restart.	Replacing	the	battery	box	with	one	that	holds	6	×	AA	batteries	will
generally	solve	this	problem.	A	battery	box	with	an	integral	switch	like	that	of
Adafruit	is	a	convenient	way	of	adding	an	on/off	switch	to	the	projects.

	

Project	1.	Autonomous	Rover
This	first	project	demonstrates	the	control	of	motors	to	allow	the	rover	to	move
around	by	itself.	The	robot	will	basically	follow	these	steps:

1.	Move	forward	until	you	get	close	to	an	obstacle.

2.	Turn	randomly	either	clockwise	or	counter-clockwise	on	the	spot	for	a
random	period	of	time.

3.	Go	back	to	step	1.

Hardware
This	project	does	not	need	any	tools	except	a	small	screwdriver	and	possibly	a
pair	of	pliers.	The	exception	to	this	is	if	the	motors	supplied	with	the	kit	do	not
have	leads	attached.	If	this	is	the	case,	then	you	will	need	to	solder	leads	to	them.

Step	1.	Assemble	the	Chassis
The	motor	chassis	kits	are	all	slightly	different.	Generally,	by	looking	at	a	picture

of	the	finished	article,	it’s	fairly	obvious	how	to	fit	them	together,	although	there
may	be	a	certain	amount	of	trial	and	error.	Figure	12-2	shows	the	chassis
assembled.

Figure	12-2	The	assembled	chassis.

Step	2.	Attach	the	RasPiRobot	Board	and	Rangefinder
The	RasPiRobot	Board	V3	(RRB3)	fits	over	the	GPIO	connector.	If	you	have	a
Raspberry	Pi	2,	then	this	fits	over	the	original	26	pins	at	the	edge	of	the	board	as
shown	in	Figure	12-3.	Figure	12-3	also	shows	the	rangefinder	plugged	into	the
RRB3.	Note	how	the	rangefinder	is	facing	forward.

Figure	12-3	Attaching	the	RRB3	and	Rangefinder.

Step	3.	Attach	Leads	to	the	Motors
Some	chassis	kits	already	have	motors	with	leads	attached.	If	not,	solder	lengths
of	leads	to	the	motors.	The	leads	need	to	be	long	enough	to	reach	to	the	screw
terminals	of	the	RRB3.

Step	4.	Attach	the	Raspberry	Pi	and	Battery	Box
The	robot	chassis	has	lots	of	holes	and	slots	in	its	laser	cut	body.	These	are
designed	to	accept	nuts	and	bolts	to	fasten	components	to	the	surface.	You	can
do	this,	if	you	have	suitable	nuts	and	bolts,	or	you	can	use	self-adhesive
Velcro™	pads	to	attach	the	Raspberry	Pi	and	battery	box.

Position	the	battery	box	so	that	it	is	fairly	central.	The	batteries	are	heavy	and
may	cause	the	robot	to	fall	over	if	they	are	at	one	edge.	The	leads	from	the
battery	box	need	to	be	able	to	reach	the	screw	terminals	of	the	RRB3	as	do	the
leads	from	the	chassis	motors.

This	project	does	not	have	an	on/off	switch,	but	you	can	achieve	the	same
effect	by	pulling	up	one	end	of	one	of	the	batteries	so	that	it	does	not	meet	its
contact.

Step	5.	Connect	the	Wires
Make	sure	that	the	Raspberry	Pi	is	not	powered	through	its	USB	connector	and
connect	the	wires	from	the	motors	and	battery	box	to	the	RRB3.	Figure	12-4
shows	how	the	motors	and	battery	box	are	wired	up.

Figure	12-4	Wiring	diagram	for	the	rover.

As	soon	as	you	connect	the	leads	from	the	batteries,	the	Raspberry	Pi	will
start	to	boot	up	under	battery	power.

Warning:	Double	Power
The	RRB3	supplies	power	to	the	Raspberry	Pi	through	the	GPIO	connector.
You	should	never	power	the	Raspberry	Pi	through	both	its	USB	connector	and
the	RRB3	and	a	battery	pack.	One	or	the	other,	but	not	both,	or	you	could

damage	the	Pi	or	RRB3.

Software
The	RRB3	has	a	Python	library	designed	to	make	the	board	easy	to	use.	To
install	the	library,	enter	the	following	commands	in	LXTerminal:

Once	the	library	has	been	installed,	you	can	make	use	of	the	example
program	called	rover_avoiding.py.	You	will	find	this	in	the	“examples”	folder	of
the	library;	to	run	the	program	use	the	following	commands:

Initially	the	motors	will	do	nothing.	The	program	will	not	start	the	rover
moving	until	the	two	connections	of	SW2	are	momentarily	connected	together.
You	can	do	this	by	touching	the	metal	blade	of	a	screwdriver	to	the	two	contacts
labeled	SW2	(Figure	12-5).

Figure	12-5	Starting	the	robot.

You	can	now	put	your	robot	down	and	let	it	explore.	To	stop	it,	pick	it	up	and
touch	the	contacts	of	SW2	again	to	stop	the	motors.

The	code	for	this	project	is	listed	below:

The	project	uses	the	libraries	“rrb3,”	“time,”	and	“random.”	The	two
variables	BATTERY_VOLTS	and	MOTOR_VOLTS	should	be	set	to	the	voltage
of	your	battery	and	motors,	respectively.	So	if	you	decide	to	change	this	project
and	use	say	a	7.4V	battery	pack	from	a	model	racing	car,	then	remember	to
change	the	BATTERY_VOLTS.	Similarly,	if	you	are	using	low-voltage	motors
change	MOTOR_VOLTS.	These	settings	scale	the	output	duty	cycle	so	that	you
can	use	lower	voltage	motors	than	the	battery	voltage	without	damaging	the

motors.
The	reference	to	the	RRB3	object	is	held	in	the	variable	“rr”	and	any	further

interaction	with	the	rover	is	via	this	variable.
The	Boolean	variable	“running”	is	used	to	switch	the	rover	from	its	running

state	to	its	dormant	state	when	SW2	is	activated.
The	function	“turn_randomly”	first	sets	a	random	turn	time	of	between	1	and

3	seconds.	The	“if”	statement	then	decides	at	random	whether	to	turn	left	or
right.	The	actual	turning	then	takes	place	at	half	speed	using	the	rr.left	or	rr.right
commands.	The	first	parameter	to	these	functions	is	the	amount	of	time	to	turn
and	the	second	parameter	is	the	proportion	of	full	speed	to	run	the	motors	at;	so
0.5	means	half	speed.

The	main	loop	is	contained	in	a	try/finally	error	catcher,	so	that	if	the	program
stops,	then	rr.cleanup	is	called	to	stop	the	motors	and	tidy	up	the	GPIO	pins	(set
them	all	to	inputs).

Inside	the	main	loop,	the	range	finder	is	used	to	determine	the	distance	in	cm
to	any	obstacle	using	rr.get_distance.	If	this	distance	is	less	than	50	cm	and	the
“running”	flag	is	true,	the	function	“turn_randomly”	is	called.	Having	done	its
random	turning,	the	rover	then	sets	of	in	a	forward	direction.	The	parameter	of	0
in	the	duration	parameter	of	rr.forward	indicates	that	the	rover	should	continue
forward	indefinitely.

Next	there	is	a	check	to	see	if	SW2	is	closed,	and	if	it	is,	then	the	“running”
variable	is	toggled	to	start	or	stop	the	robot.	If	the	robot	is	not	“running,”	then
the	motors	are	stopped.

You	won’t	want	to	have	your	roving	robot	dragging	around	a	keyboard,
mouse	and	monitor,	so	arrange	for	the	python	program	to	automatically	run	at
startup	using	the	instructions	here:	www.raspberrypi.org/forums/viewtopic.php?
t=18968

	

Project	2.	Web-Controlled	Rover
This	second	project	uses	exactly	the	same	hardware	as	the	first	robot	project,
although	it	does	not	need	the	rangefinder.	Instead	of	the	rover	being	independent,
in	this	project	the	rover	is	controlled	from	the	browser	of	your	smartphone	or
laptop	as	shown	in	Figure	12-6.

http://www.raspberrypi.org/forums/viewtopic.php?t=18968

Figure	12-6	Controlling	the	rover	from	a	web	page.

The	W,	A,	S,	D,	and	Z	letters	are	used	to	identify	the	buttons	for	forward,	left,
stop,	right,	and	backward,	respectively,	because	those	keys	on	your	keyboard
will	interact	with	the	browser	page,	so	that	when	steering	the	robot	from	a	web
page	you	can	use	those	keys	which	are	conveniently	arranged	in	a	cross	shape.

Software
In	this	project,	the	Raspberry	Pi	will	run	a	web	server	that	serves	the	page	used
to	control	the	robot.	To	do	this,	it	uses	a	web	framework	Python	library	called
Bottle.	You	will	need	to	install	Bottle	using	the	following	commands:

$	sudo	apt-get	update

$	sudo	apt-get	install	python-bottle

The	program	for	this	project	is	another	example	program	from	the	RRB3
library.	The	file	is	called	rover_web.py.

Before	you	run	the	program	on	your	Raspberry	Pi,	you	will	need	to	change

the	IP_ADDRESS	variable	at	the	top	of	the	program,	so	open	it	in	an	editor	and
change	the	line	below	so	that	it	has	the	IP	address	of	your	Raspberry	Pi.

IP_ADDRESS	=	'192.168.1.13'	#	of	your	Pi

To	start	the	program	running	on	your	Raspberry	Pi,	enter	the	command
below:

If	instead	of	the	message	above	you	get	this	message:

socket.error:	[Errno	99]	Cannot	assign	requested	address

then	that’s	a	sure	sign	that	the	IP	address	is	not	correct.
Once	the	program	is	running,	you	can	put	your	robot	on	the	floor	and	click	on

the	W	button	or	press	the	W	key	on	your	computer’s	keyboard	and	the	rover	will
drive	off.

Figure	12-7	shows	how	the	software	for	this	project	works.

Figure	12-7	A	web	interface	on	your	Pi.

This	way	of	working	can	be	used	in	any	type	of	project	that	you	want	to

make,	where	the	goal	is	to	control	something	over	the	Internet.
The	first	thing	that	happens	is	that	you	type	in	the	address	of	your	Raspberry

Pi	into	the	address	area	of	your	computer’s	browser.	This	sends	a	web	request	(1)
to	the	Python	program	(rover_web.py)	on	the	Raspberry	Pi.	The	program	then
reads	the	contents	of	the	template	file	(home.tpl)	and	sends	the	HTML
(Hypertext	Markup	Language)	and	JavaScript	contained	in	this	file	back	to	the
browser	to	be	displayed	(2).

Nothing	further	will	happen	until	you	click	one	of	the	buttons	on	the	browser
window.	Let’s	say	that	you	click	the	D	button	(go	right).	This	sends	a	second
request	to	rover_web.py,	but	this	time	the	request	has	a	parameter	of	“command”
with	a	value	of	“r”	(3).	The	program	recognizes	this	parameter	as	a	command	to
make	the	rover	turn	right	and	so	uses	the	RRB3	library	to	set	the	motors	so	as	to
turn	the	robot	to	the	right.

The	code	for	rover_web.py	is	listed	below.	It’s	actually	surprisingly	concise.

The	first	part	of	the	code	is	very	similar	to	that	of	the	previous	project.	There
are	similar	library	imports	and	initialization	of	the	RRB3	library.

After	this,	you	come	to	the	web	server	code	that	makes	use	of	the	Bottle
library.	This	starts	with	the	line	starting	“@route”.	This	identifies	the	function
that	follows	it	(“index”)	as	being	a	handler	for	incoming	web	requests	for	the
root	page	“/”.

The	“index”	function	first	finds	the	value	of	any	command	parameter	that	has
been	passed	to	it.	This	will	either	be	nothing,	if	you	are	just	loading	the	page	in
your	browser,	or	be	a	single	letter	direction	code	if	you	have	just	pressed	one	of
the	buttons	on	the	browser.

The	command	is	then	tested	in	a	series	of	“if”	statements	and	the	appropriate

movement	actions	taken.	Note	that	turning	is	done	at	half	speed	and	reversing	at
one-third	speed.

The	last	line	of	the	“index”	function	returns	the	content	of	the	“home.tpl”
template	that	contains	the	HTML	for	the	web	interface.

The	web	server	is	actually	started	inside	a	try/finally	block,	so	that	when	the
web	server	is	interrupted	the	GPIO	pins	are	cleaned	up.

The	template	file	(“home.tpl”)	is	really	a	web	page	and	like	most	web	pages
it	contains	a	mixture	of	HTML	and	JavaScript	code	that	will	be	run	by	the
browser.	There	are	also	some	styling	directives	in	there	that	just	alter	the	fonts
and	colors	of	the	interface.

It	is	beyond	the	scope	of	this	book	to	teach	web	programming	with	HTML
and	JavaScript,	but	I	can	at	least	go	through	this	template	and	explain	what	is
going	on.	I	will	not	repeat	all	the	code	here,	so	you	may	like	to	have	the	file
“home.tpl”	open	in	an	editor.

The	template	starts	by	importing	the	jQuery	JavaScript	library.	This	will	be
used	to	allow	button	presses	in	the	user	interface	to	send	web	requests	to
rover_web.py	from	within	the	browser	page.

Next,	there	is	a	block	of	style	information	contained	in	a	<style>	tag.	These
just	set	the	appearance	of	the	buttons.

After	that	is	a	<script>	tag	that	contains	the	JavaScript	code	used	in	the
browser.	This	can	be	a	bit	mind	bending,	because	what	is	happening	here	is	that
the	browser	talks	to	a	web	server	that	then	sends	the	browser	back	some	HTML
to	display	accompanied	by	some	JavaScript	code	that	the	browser	can	run	when
it	needs	to.	That	JavaScript	code	then	sends	requests	back	to	the	web	server.

The	first	part	of	this	code	is	a	function	(“sendCommand”)	that	will	be	called
whenever	one	of	the	buttons	is	pressed.

The	“sendCommand”	function	uses	the	jQuery	library	to	send	an	HTTP	request
with	the	command	letter	passed	as	its	parameter	to	“rover_web.py”.

The	other	function	defined	in	the	<script>	block	is	“keyPress”.	This	will	be
called	whenever	one	of	the	keys	on	your	keyboard	is	pressed	while	you	are	on
the	browser	window.	The	sequence	of	“if”	statements	are	used	to	decide	which
key	was	pressed	and	then	sends	the	appropriate	command.	Each	key	has	a
character	code,	based	on	the	ASCII	code	for	that	letter.	If	you	search	the	Internet

you	will	find	information	about	ASCII	codes	for	letters.	In	this	case,	“w”	is	119,
“a”	is	97,	“s”	is	115,	“d”	is	100,	and	“z”	is	122.

The	final	line	in	the	<script>	block	links	in	the	“keyPress”	function	so	that	it
is	called	whenever	a	key	is	pressed.

$(document).keypress(keyPress);

The	actual	HTML	that	displays	the	buttons	is	listed	below:

The	buttons	are	laid	out	in	a	table,	and	each	button	has	a	handler	for	the
“onClick”	event	that	calls	the	function	“sendCommand”	that	you	looked	at
earlier.

	

Summary
This	is	the	final	project	in	this	book.	In	the	next	and	final	chapter	of	this	book
you	will	learn	about	other	resources	and	places	to	help	you	to	program	your
Raspberry	Pi.

13
What	Next

The	Raspberry	Pi	is	a	phenomenally	flexible	device	that	you	can	use	in	all
sorts	of	situations—as	a	desktop	computer	replacement,	a	media	center,	or	an
embedded	computer	to	be	used	as	a	control	system.

This	chapter	provides	some	pointers	for	different	ways	of	using	your
Raspberry	Pi	and	details	some	resources	available	to	you	for	programming	the
Raspberry	Pi	and	making	use	of	it	in	interesting	ways	around	the	home.

	

Linux	Resources
The	Raspberry	Pi	is,	of	course,	one	of	many	computers	that	runs	Linux.	You	will
find	useful	information	in	most	books	on	Linux;	in	particular,	look	for	books	that
relate	to	the	distribution	you	are	using,	which	for	Raspbian	will	be	Debian.

Aside	from	the	File	Manager	and	applications	that	require	further
explanation,	you’ll	want	to	know	more	about	using	the	Terminal	and	configuring
Linux.	A	useful	book	in	this	area	is	The	Linux	Command	Line:	A	Complete
Introduction,	by	William	E.	Shotts,	Jr.	Many	good	resources	for	learning	more
about	Linux	can	be	found	on	the	Internet,	so	let	your	search	engine	be	your
friend.

	

Python	Resources
Python	is	not	specific	to	the	Raspberry	Pi,	and	you	can	find	many	books	and
Internet	resources	devoted	to	it.	For	a	gentle	introduction	to	Python,	you	might
want	to	pick	up	Python:	Visual	QuickStart	Guide,	by	Toby	Donaldson.	It’s
similar	to	this	book	in	style,	but	provides	a	different	perspective.	Also,	it’s

written	in	a	friendly,	reassuring	manner.	If	you	want	something	a	bit	more	meaty,
but	still	essentially	a	beginner’s	text,	consider	Python	Programming:	An
Introduction	to	Computer	Science,	by	John	Zelle.

When	it	comes	to	learning	more	about	pygame,	you’ll	find	Beginning	Game
Development	with	Python	and	Pygame,	by	Will	McGugan,	to	be	quite	helpful.

Finally,	here	are	some	good	web	resources	for	Python	you’ll	probably	want	to
add	to	your	browser’s	favorites	list:

	http://docs.python.org/py3k/	The	official	Python	site,	complete	with
useful	tutorials	and	reference	material.

	www.pythonware.com/library/tkinter/introduction/	A	useful	reference
for	Tkinter.

	http://zetcode.com/gui/tkinter/layout/	This	tutorial	sheds	some	much
needed	light	on	laying	out	widgets	in	Tkinter.

	www.pygame.org	The	official	pygame	site.	It	contains	news,	tutorials,
reference	material,	and	sample	code.

	

Raspberry	Pi	Resources
The	official	website	of	the	Raspberry	Pi	Foundation	is	www.raspberrypi.org.
This	website	contains	a	wealth	of	useful	information,	and	it’s	the	place	to	find
announcements	relating	to	happenings	in	the	world	of	Raspberry	Pi.

The	forums	are	particularly	useful	when	you	are	looking	for	the	answer	to
some	knotty	problem.	You	can	search	the	forum	for	information	from	others	who
have	already	tried	to	do	what	you	are	trying	to	do,	you	can	post	questions,	or	you
can	just	show	off	what	you’ve	done	to	the	community.	When	you’re	looking	to
update	your	Raspberry	Pi	distribution	image,	this	is	probably	the	best	place	to
turn.	The	downloads	page	lists	the	distributions	currently	in	vogue.

The	Raspberry	Pi	even	has	its	own	online	magazine,	wittily	named	The
MagPi.	This	is	a	free	PDF	download	(www.themagpi.com)	and	contains	a	good
mixture	of	features	and	“how-to”	articles	that	will	inspire	you	to	do	great	things
with	your	Pi.

For	more	information	about	the	hardware	side	of	using	the	Raspberry	Pi,	the
following	links	are	useful:

	http://elinux.org/RPi_VerifiedPeripherals	A	list	of	peripherals	verified	as
working	with	the	Raspberry	Pi.

http://docs.python.org/py3k/
http://www.pythonware.com/library/tkinter/introduction/
http://zetcode.com/gui/tkinter/layout/
http://www.pygame.org
http://www.raspberrypi.org
http://www.themagpi.com
http://elinux.org/RPi_VerifiedPeripherals

	http://elinux.org/RPi_Low-level_peripherals	A	list	of	peripherals	for
interfacing	with	the	GPIO	connector.

If	you	are	interested	in	buying	hardware	add-ons	and	components	for	your
Raspberry	Pi,	Adafruit	has	a	whole	section	devoted	to	the	Raspberry	Pi.
SparkFun	also	sells	Raspberry	Pi	add-on	boards	and	modules.	In	the	UK,	CPC,
Pimoroni,	and	Maplins	all	sell	interesting	add-ons	for	the	Raspberry	Pi.

	

Other	Programming	Languages
In	this	book,	we	have	looked	exclusively	at	programming	the	Raspberry	Pi	in
Python,	and	with	some	justification:	Python	is	a	popular	language	that	provides	a
good	compromise	between	ease	of	use	and	power.	However,	Python	is	by	no
means	the	only	choice	when	it	comes	to	programming	the	Raspberry	Pi.	The
Raspbian	Wheezy	distribution	includes	several	other	languages.

Scratch
Scratch	is	a	visual	programming	language	developed	by	MIT.	It	has	become
popular	in	education	circles	as	a	way	of	encouraging	youngsters	to	learn
programming.	Scratch	includes	its	own	development	environment,	like	IDLE	for
Python,	but	programming	is	carried	out	by	dragging	and	dropping	programming
structures	rather	than	simply	typing	text.

Figure	13-1	shows	a	section	of	one	of	the	sample	programs	provided	with
Scratch	for	the	game	Pong,	where	a	ball	is	bounced	on	a	paddle.

http://elinux.org/RPi_Low-level_peripherals

Figure	13-1	Editing	a	program	in	Scratch.

Simon	Walters	has	developed	a	GPIO	library	so	that	you	can	use	Scratch	to
control	GPIO	pins.

C
The	C	programming	language	is	the	language	used	to	implement	Linux,	and	the
GNU	C	compiler	is	included	as	part	of	the	Raspbian	Wheezy	distribution.	To	try
out	a	little	“Hello	World”’	type	of	program	in	C,	use	IDLE	to	create	a	file	with
the	following	contents:

Save	the	file,	giving	it	the	name	hello.c.	Then,	from	the	same	directory	as	that
file,	type	the	following	command	in	the	terminal:

gcc	hello.c	-o	hello

This	will	run	the	C	compiler	(gcc),	converting	hello.c	into	an	executable
program	called	just	hello.	You	can	run	it	from	the	command	line	by	typing	the
following:

./hello

The	IDLE	editor	window	and	command	line	are	shown	in	Figure	13-2,	where
you	can	also	see	the	output	produced.	Notice	that	the	\n	characters	create	blank
lines	around	the	message.

Figure	13-2	Compiling	a	C	program.

	

Applications	and	Projects
Any	new	piece	of	technology	such	as	the	Raspberry	Pi	is	bound	to	attract	a
community	of	innovative	enthusiasts	determined	to	find	interesting	uses	for	the
Raspberry	Pi.	At	the	time	of	writing,	a	few	interesting	projects	were	in	progress,
as	detailed	next.

Media	Center	(Raspbmc)

Raspbmc	is	a	distribution	for	the	Raspberry	Pi	that	turns	it	into	a	media	center
you	can	use	to	play	movies	and	audio	stored	on	USB	media	attached	to	the	Pi,	or
you	can	stream	audio	and	video	from	other	devices	such	as	iPads	that	are
connected	to	your	home	network.	Raspbmc	is	based	on	the	successful	XBMC
project,	which	started	life	as	a	project	to	use	Microsoft	Xboxes	as	media	centers.
However,	it’s	available	on	a	wide	range	of	platforms.

With	the	low	price	of	the	Raspberry	Pi,	it	seems	likely	that	a	lot	of	them	will
find	their	way	into	little	boxes	next	to	the	TV—especially	now	that	many	TVs
have	a	USB	port	that	can	supply	the	Pi	with	power.

You	can	find	out	more	about	Raspbmc	at	www.raspbmc.com/about/,	you	can
learn	about	the	XBMC	project	at	www.xbmc.org.	All	the	software	is,	of	course,
open	source.

Home	Automation
Many	small-scale	projects	are	in	progress	that	use	the	Raspberry	Pi	for	home
automation,	or	domotics	as	it	is	also	known.	The	ease	with	which	sensors	and
actuators	can	be	attached	to	it,	either	directly	or	via	an	Arduino,	make	the	Pi
eminently	suitable	as	a	control	center.

Most	approaches	have	the	Raspberry	Pi	hosting	a	web	server	on	the	local
network	so	that	a	browser	anywhere	on	the	network	can	be	used	to	control
various	functions	in	the	home,	such	as	turning	lights	on	and	off	or	controlling	the
thermostat.

	

Summary
The	Raspberry	Pi	is	a	very	flexible	and	low-cost	device	that	will	assuredly	find
many	ways	of	being	useful	to	us.	Even	as	just	a	simple	home	computer	for	web
browsing	on	the	TV,	it	is	perfectly	adequate	(and	much	cheaper	than	most	other
methods).	You’ll	probably	find	yourself	buying	more	Raspberry	Pi	units	as	you
start	to	embed	them	in	projects	around	your	home.

Finally,	don’t	forget	to	make	use	of	this	book’s	website
(www.raspberrypibook.com),	where	you	can	find	software	downloads,	ways	of
contacting	the	author,	as	well	as	errata	for	the	book.

http://www.raspbmc.com/about/
http://www.xbmc.org
http://www.raspberrypibook.com

INDEX

Please	note	that	index	links	point	to	page	beginnings	from	the	print	edition.
Locations	are	approximate	in	e-readers,	and	you	may	need	to	page	down	one	or
more	times	after	clicking	a	link	to	get	to	the	indexed	material.

Note:	Page	numbers	followed	by	f	or	t	represent	figures	or	tables,	respectively.

Symbols
""	(double	quotes),	with	strings,	42,	59
'	'	(single	quotes),	with	strings,	41,	59
,	(comma),	separating	parameters,	47
/	(divide),	in	Python	Shell,	29
/	(forward	slash),	in	the	command	line,	21
/	(slash)	characters,	separating	parts	of	a	directory	name,	17
:	(colon),	in	if	command,	35
:	character,	at	the	end	of	the	line,	31
\	(backslash),	beginning	escape	characters,	59
\	(line-continuation	command),	110
_	(underscore	character),	in	a	variable,	30
+	operator,	joining	strings	together,	43
=	operator,	assigning	values,	35,	41,	44,	57
==	(equals)	comparison	operator,	35,	36t	!=	(not	equals)	comparison	operator,

36t
#	character,	indicating	a	comment,	34
$	sign,	as	used	in	this	book,	20
()	parentheses
containing	parameters,	32
specifying	processing	order,	29

*	(multiply),	in	Python	Shell,	29
*	(wildcard),	80
[]	(square	brackets),	42,	44,	56

{	}	template	markers	using,	60t
<	(less	than)	comparison	operator,	36t
<=	(less	than	or	equal	to)	comparison	operator,	36t	>	(greater	than)	comparison

operator,	36t
>=	(greater	than	or	equal	to)	comparison	operator,	36t	>>>	prompt,	in	Python

Shell,	26,	29

Numbers
3.3V	pins,	116
6	×	AA	battery	pack,	160
30	Arduino	Projects	for	the	Evil	Genius	(Monk),	138

A
a	(append)	mode,	79
Abiword	word	processor,	22,	23f	abs	(absolute	value)	function,	59t	actuators,

attaching,	178
Adafruit,	5,	8,	135,	150,	175
“Adafruit_LEDBackpack”	folder	tree,	153
ADC	(Analog	to	Digital	Convertor)	chip,	128
add-ons,	175
address,	of	your	Raspberry	Pi,	168
alert	dialog,	97f
all_letters_guessed	function,	53
analog	inputs,	128–134
analog	outputs,	123–126
analog	sensors,	128
analog_read	function,	134
and,	comparing	logical	values,	36
App	class,	adding,	87
append	(a)	mode,	79
append	list	function,	61t
applications,	installing	new,	22–23
apt-get	command,	22,	23
Arch	Linux	ARM	distribution,	8t
arcs,	drawing,	101
Arduino	boards,	138,	138f,	139–141

arithmetic,	in	Python	Shell,	26,	26f	array,	43f
ASCII	codes,	for	letters,	171
assembled	chassis,	161f
audio,	playing,	177
audio	socket,	4
autonomous	rover,	160–166

B
backslash	(\),	beginning	escape	characters,	59
battery	box,	for	robot	chassis,	160,	162
BATTERY_VOLTS	variable,	165
BCM	(Broadcom),	122
Beginning	Game	Development	with	Python	and	Pygame	(McGugan),	103,	174
bin	function,	59t
binary	string,	converting,	59t
black,	for	the	ground	connection,	151
blink.py	program,	122–123
blit	command,	106
blue,	for	the	ground	connection,	151
board	manufacturers,	137
booting	up,	12–14
Bottle	web	framework,	installing,	166
breadboard
connected	with	Pi,	121f	with	jumper	wires,	118
layout	for	LED	display,	151f	for	LED	fader	project,	144
with	the	Pi	Cobbler,	135
with	pins	of	the	display	at	one	end,	150,	151f	putting	a	resistor	on,	119,	119f

putting	an	LED	on,	120,	120f	wiring	diagram	for,	129f	break	command,
38–39

BROWSE	selection,	92
browsers,	controlling	home	functions,	178
bumpy-case	convention,	30
button,	adding	to	LED	display,	154,	156f	C
C	programming	language,	175–176,	177f	camel-case	convention,	30
camera	connector,	3f
Canvas	interface,	Tkinter’s,	100–101,	100f	capacitor,	130,	131

capitalize	string	function,	60t
case	sensitivity,	55
cases,	6t,	8–9,	8f,	9f	catch	detection,	110
cd	(change	directory)	command,	21
center	string	function,	60t
ChangeDutyCycle,	setting	brightness	for	the	LED,	126
charge_time	function,	133–134
charging	resistor,	value	of,	130
chassis,	assembling	for	the	robot,	161,	161f	check_for_catch	function,	110
Checkbox	widget,	91,	91f	Checkbutton,	creating,	91
Chromium	browser,	downloading,	18
class,	in	Tkinter,	86
clauses,	mutually	exclusive,	37
cleanup	function,	123
clear	dictionary	function,	62t
clock
building,	149–157
in	pygame,	111

close	command,	76
colon	(:),	in	if	command,	35
Color	Chooser,	98,	98f	color	scheme,	for	connections,	151
columnconfigure	command,	94
columnconfigure	method,	95
comma	(,),	separating	parameters,	47
“command”	attribute,	147
command	line,	using,	19–21
commands
built	into	Python,	46
making	the	rover	move,	168

comment,	indicating,	34
“common”	lead,	of	the	RGB	LED,	145
comparison	operators,	35–36,	36t	complex	function,	59t
complex	list,	45f
complex	number,	creating,	59t
complexity,	managing,	46
composite	video	signal,	4

connecting,	all	parts	together,	11
control	center,	Raspberry	Pi	as,	178
conventions,	for	variables,	30
convert	command,	106
convert	method,	90
converters	module,	86,	89–90
coordinates,	in	pygame,	104
copy	function,	in	shutil,	79
copytree	function,	79
count	list	function,	61t
curselection	method,	92

D
data,	saving	between	runs	of	a	program,	80
date,	formats	for,	157
date	command,	152
Debian	distribution,	of	Linux,	173
def	keyword,	47
del	function,	61t,	62t	desktop,	16–18,	16f	“Desktop	Log	in	as	user	pi	at	the

graphical	desktop”	option,	13
dialogs,	97–98
dice,	simulating,	32–34,	34f	dictionaries,	55–56
dictionary	functions,	61,	62t	digital	clock.	See	LED	digital	clock
digital	input,	console	monitoring,	127f	digital	inputs,	126–128
digital	outputs,	118–123
discharge	function,	133
disp_mode	variable,	157
display,	7
display	function,	110
display	module,	151
display_date	function,	157
display_time	function,	157
distros,	15
divide	(/),	in	Python	Shell,	29
domotics,	178
Don’t	Repeat	Yourself	(DRY)	principle,	38,	77

double	power	warning,	163
double	quotes	("	"),	with	strings,	42,	59
double_dice	program,	34–35
double-precision	floating-point	number,	88
DoubleVar,	88–89
duty,	of	a	PWM	pulse,	124
DVI	connector,	1,	6t,	7
DVI-equipped	monitors,	4

E
Edit	menu,	creating,	100
editor.	See	IDLE	editor
EEPROM	(Electrically	Erasable	Programmable	Read-Only	Memory)	chip,	118
electronic	devices,	connecting,	115
Electronics	Starter	Kit	for	Raspberry	Pi,	from	MonkMakes,	118–119,	144,	150
elif	(else	if),	37
else,	37
empty	string	(**),	returning,	78
“Enable	Boot	to	Desktop/Scratch”	selecting	option,	13
END,	indicating	end	of	a	list,	91
end-of-line	character	(\n).	See	\n	(newline	character)
endswith	string	function,	60t
enthusiasts,	177–178
equals	(==)	comparison	operator,	35,	36t	equals	sign	(=),	assigning	a	value	to	a

variable,	30
error	messages,	31,	58
errors,	in	programs,	58
escape	characters,	59
Ethernet	connector,	3f
Ethernet	patch	cable,	6t,	11f	exceptions,	58,	77
exclusive	end	point,	32
executable	(applications)	files,	launching,	16
exit	command,	77
EXTENDED	selection,	92

F

factorial	function,	59t
fancy	clock.py	file,	154–156
female-to-male	jumper	wires,	120,	126,	144
File	Browser,	opening	from	the	start	menu,	27
File	Choosers,	in	the	package	tkinter.filedialog,	98
File	Explorer,	in	Windows,	16
File	Manager,	16,	17
File	menu,	28,	100
filename,	putting	in	a	variable,	77
files,	75–80
adding	to	a	program,	76
copying,	79
moving,	79
Python	programs	kept	in,	27
reading,	75–78
writing,	78–79

file-system-type	operations,	on	files,	79–80
fill	attribute,	97
find	function,	52,	60t	Finder,	on	a	Mac,	16
flash	function,	140
flat	cable	connectors,	on	the	Pi	2,	5
float	function,	62t
floats	(floating	points),	29
folder,	copying	an	entire,	79
font,	creating,	110
for	command,	33,	34
for	in	command,	32
for	loops,	combining	with	lists,	46
format	string	function,	60t
four-digit	seven-segment	I2C	display,	150
Frame	object,	adding	a	label	to,	87
functions,	46–47
compared	to	commands,	33
naming	conventions	for,	47
summary	of,	58–62

G
games,	programming,	103–114
get	function,	62t
get	method,	92
get_guess	function,	49,	50
getting	started,	15–24
Github,	137,	153
glob	package,	80
global	variables,	49,	51,	108
globbing,	80
GND	(ground),	pins	labeled,	117
GND	connections,	on	the	GPIO	connector,	120
GNU	C	compiler,	175–176
Gnumeric	spreadsheet,	installing,	22
Google	Chrome,	Chromium	based	on,	18
GPIO	(General	Purpose	Input/Output)	connector,	115,	163
GPIO	(General	Purpose	Input/Output)	pins,	3f,	4,	116
connecting	the	breadboard	to,	120
controlling	charging	of	the	capacitor,	131
delicate	and	intolerant	of	electrical	abuse,	137
generating	a	series	of	pulses,	124,	124f	linking	to	the	Cobbler,	135
not	burning	out,	119
output,	125
setting	as	outputs,	146
with	a	special	purpose,	117
using	Scratch	to	control,	175
using	the	names	of,	122

GPIO	pin	18,	accessing,	156
graphical	user	interfaces	(GUIs),	85–101
greater	than	(>)	comparison	operator,	36t
greater	than	or	equal	to	(>=)	comparison	operator,	36t	grid	command,	laying	out

a	button,	89
grid	method,	specifying	a	grid	layout,	87
GUIs	(graphical	user	interfaces),	85–101

H

Hangman	program,	reading	words	from	a	file,	75
Hangman	word-guessing	game,	41,	47–55
hardware,	interfacing,	115–141
hardware	side,	of	using	the	Raspberry	Pi,	174–175
HAT	(Hardware	Attached	to	Top)	standard,	118,	136–137,	137f	HDMI	(High-

Definition	Multimedia	Interface)	video	output,	1
cable,	11f
connector,	4,	7
video,	3f

HDMI-to-DVI	adapter,	6t
Hello	Pygame	application,	105f
Hello	World	program,	85–86
in	C,	176,	177f	in	IDLE	editor,	29

Hello	World–type	application,	in	pygame,	104
hex	function,	59t
hexadecimal	string,	converting,	59t
home	automation,	122,	178
home	hub,	assigning	an	IP	address,	18
homepi,	home	directory	root	to,	17
“home.tpl”	template,	returning	the	content	of,	170
HTML,	displaying	buttons,	171
HTTP	(Hypertext	Transfer	Protocol)	requests,	81
hung	program,	38

I
I2C	bus,	152–153
ID_SC	pin,	118
ID_SD	pin,	118
IDLE	editor,	27,	27f,	122
window	and	command	line,	176,	177f	IDLE	program,	25,	26f	IDLE3,	for

Python	3,	125
if	command,	35
if	lines,	37
“if”	statement,	“while”	loop	containing,	127–128
ignore	variable,	108
image	file,	reading	into	pygame,	105–106

images,	drawing,	101
immutable	tuples,	57
import	command,	121
index	function,	61t,	169–170
IndexError:	string	index	out	of	range	message,	42–43
init	method,	87,	105,	146
input,	setting	a	pin	to	be,	116
input	function,	48,	50–51
insert	function,	45,	61t	int	function,	62t
integers,	29
Internet
accessing,	18
controlling	something	over,	168
references	on,	101
resources,	23–24,	24f	IP	address,	of	your	Raspberry	Pi,	167

isalnum	string	function,	60t
isalpha	string	function,	60t
isspace	string	function,	60t

J
JavaScript	code,	used	in	the	browser,	170
jQuery	JavaScript	library,	170
jumper	wires,	118,	127f,	150.	See	also	wires	K
key,	as	a	string,	or	number,	or	tuple,	56
key	in	d	function,	62t
keyboard,	7,	11f	keyPress	function,	170–171
“kitchen	sink”	application,	90,	91f,	92–93

L
Label	class,	86
layouts,	for	parts	of	applications,	92–95
leads,	attaching	to	motors,	161
LED
blinking	on	and	off,	122
changing	color,	145
display	module,	150

lighting	pins,	116
putting	on	the	breadboard,	120,	120f	turning	on/off,	122
varying	the	brightness	of,	123–126
wiring	up,	118

LED	digital	clock
building,	149–157,	149f	hardware	assembly,	150–152
software	for,	152–154

LED	fader	project,	143–147
Legos,	building	a	case	using,	8
len	command,	42,	44
len	function,	62t
less	than	(<)	comparison	operator,	36t
less	than	or	equal	to	(<=)	comparison	operator,	36t	letters,	ASCII	codes	for,	171
libraries,	importing,	33
LibreOffice	office	suite,	22
light	intensity,	measuring,	129f
line-continuation	command	(\),	110
lines,	drawing,	101
Linux,	resources	for	Raspberry	Pi,	173
The	Linux	Command	Line:	A	Complete	Introduction	(Shotts),	173
Linux	desktop,	1,	2f	Linux	distributions,	8t,	15
list	functions,	61,	61t,	62t	Listbox,	91–92,	94
lists,	43–46,	45f	functions	used	with,	61,	61t	without	the	square	brackets,	56
lives_remaining	function,	50
ljust	string	function,	60t
logical	values,	36–37
loop	function,	140
looping,	in	Python,	31
lower	function,	55,	60t	ls	(list)	command,	20,	33
LXDE	windowing	environment,	1
LXTerminal
command	line,	19f	icon,	19,	19f	installing	a	library,	163
typing	a	sudo	command	into,	121
window,	19

M

The	MagPi	(online	magazine),	174
male-to-male	jumper	wires,	135
math	functions,	59t
media	center,	Raspberry	Pi	as,	3
media	center	distribution,	177
menu	bar,	at	the	top	of	IDLE,	27
menus,	for	applications,	99–100,	99f	method	pack,	calling,	86
micro-SD	card,	3f
already-prepared,	4
prepared	with	NOOBS,	7

micro-SD	card	slot,	4
microseconds,	result	in,	133
Microsoft	Xboxes,	as	media	centers,	177
micro-USB	power	only,	3f
micro-USB	socket,	4
Midori	web	browser,	18f
minimum	and	maximum,	method	of	finding,	57–58
mini-USB	Lead,	11f
modal	dialogs,	97
mode,	for	opening	a	file,	78–79
ModMyPi	cases,	8
MonkMakes	Electronics	Starter	Kit	for	Raspberry	Pi,	118–119,	128,	150
motor	chassis,	159,	161
MOTOR_VOLTS	variable,	165
motors
allowing	the	rover	to	move	around	by	itself,	160
attaching	leads	to,	161
starting	and	stopping,	164

mouse,	7,	11f	following	in	a	game,	107
move	function,	in	shutil,	79
movies,	playing,	177
MULTIPLE	selection,	92
multiply	(*),	in	Python	Shell,	29

N
\n	(newline	character),	59,	78,	176,	177f	natural	logarithm	function,	59t

Newark,	5
NOOBS	(New	Out	of	the	Box	Software)	installer,	7,	12
not,	comparing	logical	values,	36
not	equals	(!=)	comparison	operator,	36t
number	functions,	59,	59t	numbers
experimenting	with	in	Python	Shell,	29
functions	used	with,	59,	59t	O

object	orientation,	45
object	Tk,	assigning	a	variable	to,	86
oct	function,	59t
octal	string,	converting,	59t
Office	folder,	22
“onClick”	event,	calling	“sendCommand,”	171
online	magazine,	for	Raspberry	Pi,	174
online	references,	101
on/off	switch,	achieving	the	effect	of,	162
operating	system(s)
distributions,	7
list	of,	12,	12f	selecting	to	install	with	NOOBS,	12f	or,	comparing	logical

values,	36
oscilloscope	trace,	of	voltage	at	pin	23,	131,	132f	output,	setting	a	pin	to	be,	116
output	command,	for	GPIO,	122
ovals,	drawing,	101

P
pack	layout,	positioning	a	scrollbar,	97
packages,	22,	23
parameters,	32,	47
parentheses	()
containing	parameters,	32
specifying	processing	order,	29

PCB	mount	push	switch,	150
peripherals,	175
Perma-Proto,	136,	136f	Perma-Proto	Pi	HAT,	136–137,	137f	photoresistor
as	faucets,	131
using	on	breadboard,	128–130,	129f	value	of	resistance	of,	133

Pi	Cobbler,	118,	135,	135f	Pi	Store,	finding,	23
pick_a_word	function,	49
pickling,	80–81
Pidora	distribution,	8t
pin	GPIO13,	140
pin	GPIO18,	120
pin	identification	mode,	set	to	BCM,	126
PiTest.ino	sketch,	loading	onto	the	Arduino,	139
play	function,	controlling	a	game,	49
polygons,	drawing,	101
Pong	game,	provided	with	Scratch,	175,	176f	pop	command,	44–45
pop	list	function,	61t
positive	leg,	of	an	LED,	120,	120f	power	pins,	117
power	supply,	1,	3,	4,	5,	6f	“powered”	USB	hub,	11
power-handling	capabilities,	expressed	in	watts,	5
print	command,	32,	42
print_word_with_blanks	function,	50,	51–52
printed	circuit	boards	(PCBs),	136
process_guess	function,	49,	52
Programming	Arduino:	Getting	Started	with	Sketches,	138
programming	languages,	for	Raspberry	Pi,	175–176,	177f	programs
installing	example,	33–34
saving,	28f

projects,	for	Raspberry	Pi,	177–178
prototyping	boards,	135–137
prototyping	project	(clock),	149–157,	149f	PUD_UP	(Pull	Up	Down	Up),	126–

127
Pulse	Width	Modulation	(PWM),	producing	an	“analog”	output,	124
pulses	per	second,	specifying,	125
pwd	(print	working	directory)	command,	19–20,	20f	PWM	channels,	125,	146
pygame,	100
coordinate	system,	104f	import	for	locals,	107
importing,	105
learning	more	about,	174
library,	103
making	a	simple	game,	106–114,	106f	site,	official,	174

website,	114
writing	text	on	the	screen,	110

Python
basics	of,	25–39
code	to	talk	to	the	Arduino,	140–141
described,	175
examples	used	in	this	book,	33
folder,	creating,	28,	28f	games,	opening,	17
official	site,	174
resources	for	Raspberry	Pi,	173–174
running	at	startup,	166
versions	of,	26

Python	2
compared	to	Python	3,	26,	48
input	function,	50–51

Python	3
console,	121
example	written	in,	48
Shell,	25,	26f	“Python	Games”	shortcut,	104

Python	Programming:	An	Introduction	to	Computer	Science	(Zelle),	174
Python	Shell,	25
arithmetic	in,	26,	26f	entering	a	variable	name	into,	42

Python:	Visual	QuickStart	Guide	(Donaldson),	174
python_games	directory,	17f,	104

Q
QUIT	event,	checking	for,	107–108

R
r	(read)	mode,	79
r+	mode,	79
radio	buttons,	frame	for,	92–93
randint	function,	33
“random”	library,	165
‘random’	module,	‘choice’	function	from,	48–49
random	number,	generating,	32

random	turn	time,	setting,	165
range	command,	32
rangefinder,	161,	162f,	166
raspberry	game,	building,	106–114,	106f	Raspberry	Leaf,	116,	119,	120
Raspberry	Pi
delicate	GPIO	pins,	119
desktop,	2f
different	ways	of	using,	173
forum,	22
Internet	sites	relating	to,	24
kit,	6t
model	B,	USB	ports,	10

Raspberry	Pi	(Cont.)
models	2	and	B,	115–116,	116f	models	A	and	B,	117f	models	A	and	B	using	a

full-size	SD	card,	3
parts	of,	3–5,	3f	picking	up	the	time	from	a	network	time	server,	152
related	items	found	by	Amazon,	81–82
sending	a	message	to	the	Arduino,	141
setting	up,	5–11
shutting	down	and	powering	off,	154
specific	resources,	174–175
supplying	power	to,	163

Raspberry	Pi	2
compared	to	Raspberry	Pi	Model	A+,	3–4
described,	1
micro-SD	card,	3
pin	names	for,	116,	117f	Raspberry	Pi	Foundation,	website	of,	174

Raspberry	Pi	robot.	See	robot	rover	project
Raspberry	Punnet	folded	card	design,	8
Raspberry	Squid,	144
raspberry.jpg	file,	106
Raspbian	distribution,	8t,	13f,	15
Raspbian	Wheezy	distribution
packages	available	for,	22–23
programming	languages,	175–176

Raspbmc	distribution,	for	the	Raspberry	Pi,	177

raspi-config	command,	152
raspi-config	tool,	12,	13f	RasPiRobot	Board	V3	(RRB3),	160,	161,	162f	rasps

collection,	114
raw_input	function,	48,	51
read	(r)	mode,	79
read	function,	78
read_resistance	function,	134
readline	function,	78
rectangles,	drawing,	101
red,	for	a	positive	supply,	151
refactoring,	performing,	111
regular	expressions,	in	Python,	82
regular	user	account,	privileges	of,	21
remove	list	function,	61t
replace	string	function,	60t
repurposed	containers,	8
resistance
converting	reading	of	time	into,	134
example	code	for	reading,	130
measuring,	131–133
of	a	photoresistor,	128
of	a	thermistor,	128

resistance.py	program,	130
resistive	sensors,	types	of,	128
resistor,	119,	119f	resizing	window	example,	layout	for,	95f
return	command,	47
reverse	list	function,	61t
RGB	LED
breadboard	layout	for,	144–145,	145f	connected	to	a	Raspberry	Pi,	143f

controlling	color	of	light,	143
RGB_LED.py,	145
RISC	OS	distribution,	8t
RJ-45	Ethernet	connector,	4
RJ-45	LAN	connector,	4
rmtree	function,	79
robot

controlled	from	smartphone	or	laptop,	166,	167f	starting,	164f
robot	chassis
with	6V	motors,	160
attaching	Raspberry	Pi	and	battery	box,	162

robot	rover	project,	159–171,	159f	parts	needed,	160
wiring	diagram	for,	163f	root	directory,	17

root	Menu,	creating,	100
root	object,	passing	to	init,	87
root	variable,	86
round	function,	59t
rover_avoiding.py	example	program,	164
rover_web.py	file,	166–171
rowconfigure	command,	94
rowconfigure	method,	95
RPi.GPIO	library,	121,	145,	156
“rr”	variable,	interaction	with	the	rover	via,	165
RRB3	library,	163,	165,	169
rr.get_distance,	166
RS	Components,	5
rules,	for	naming	variables,	30
“Run	Module”	menu	option
on	IDLE,	122
selecting,	28,	34

“running”	Boolean	variable,	165

S
Save	dialog,	changing	file	type	to	.txt,	75
Scale	objects,	constructing	with	“from_,”	147
score,	message	area	to	display,	110
Scratch	visual	programming	language,	175,	176f	screen	variable,	assigning,	105
<script>	tag,	170
scrollbar,	96–97
SD	card
NOOBS	preinstalled,	6t	as	an	optional	extra	feature,	4

selection	indexes,	92
selectmode	property,	92

self-adhesive	Velcro™	pads,	160,	162
self.t_conv	variable,	90
sendCommand	function,	170
sensors,	128,	178
serial	bus	type	12C,	117
serial	interface	pins,	117
setmode	command,	for	GPIO,	122
setup	command,	for	GPIO,	122
setup	function,	for	serial	communications,	140
showerror	function,	97
showinfo	function,	97
showwarning	function,	97
shutil	(shell	utility)	package,	79
single	quotes	('	'),	with	strings,	41,	59
SINGLE	selection,	92
single_letter_guess	function,	53
SK	Pang	cases,	8
slash	(/)	characters,	separating	parts	of	a	directory	name,	17
sliders,	145,	147
socket.error	message,	167
solderless	breadboard.	See	breadboard
sort	command,	44
sort	list	function,	61t
speed,	managing	in	pygame,	111
SPI	serial	interface,	117
Spinbox,	92
split	string	function,	60t
splitlines	string	function,	60t
spoon,	107,	108
square	brackets	[],	42,	44,	56
square	root	function,	59t
stereo	analog	signal,	4
stereo	audio	and	composite	video,	3f
sticky	attributes,	of	components,	94–95
string	constants,	enclosing	with	quotes,	59
string	functions,	59,	60t	“string	index	out	of	range,”	part	of	the	message,	42–43

strings
chopping	into	a	smaller	string,	43
described,	41
finding	character	at	a	particular	place	in,	42
finding	number	of	characters	in,	42
functions	used	with,	59,	60t	joining	together,	43
list	of,	48

strip	string	function,	60t
stubs,	writing,	49–50
<style>	tag,	style	information	contained	in,	170
sudo	(super-user	do)	command,	21,	22,	121
sudo	date	command,	152
sudo	raspi-config	command,	152
super-user
accessing	GPIO	pins,	121
becoming,	21
starting	IDLE	on	Python	3	as,	122

switch,	126,	154
switch	pin,	setting	as	input,	156
switch.py	program,	126
SyntaxError:	invalid	syntax	message,	31
system,	diagram	of,	11f
“System	on	a	Chip,”	Broadcom’s,	5
system	time,	displaying	Raspberry	Pi’s,	152

T
\t	(tab	character),	59
T	(time	constant),	131,	133
TAB	key,	completing	a	command,	21
temperature	conversion	application,	86,	86f,	88f	temperature	sensor	chip

(TMP36),	128
template	file	(home.tpl),	168,	170
template	markers	using	{	},	60t
terminal,	navigating	with,	19
text,	drawing,	101
text	editor,	27

text	file,	creating	in	IDLE,	75,	76f	text	object,	creating,	110
Text	widget,	95,	96–97,	96f	textvariable	property,	specifying,	89
time
displaying	on	the	LED,	153–154
importing,	145
setting	manually,	152

time	constant	(T),	131,	133
“time”	library,	123,	165
time	zone,	adjusting,	152
time.sleep	command,	128
timing,	110–111
title	text,	copying	out	actual,	82
Tkinter
creating	a	user	interface,	145
grid	layout	in,	103–104
Hello	World	in,	86f	importing,	145
interface	to	the	Tk	GUI	system,	85
laying	out	widgets	in,	174
linking	fields	with	valus,	88
reference	for,	174
root	object,	87
user	interface	controlling	the	LED,	144f	Tkinter	Scale	class,	implementing

sliders,	147
tkinter.filedialog	package,	98
tkinter.messagebox	package,	97
trigonometry	functions,	59t
try	command,	file-reading	code	inside,	77
try/finally	block,	123
loop	running	inside,	147
web	server	started	inside,	170
“while”	loop	no	longer	in,	127

try/finally	error	catcher,	166
tuples,	56–58,	104
turn_randomly	function,	165
TV,	as	a	monitor,	7
TXD	and	RXT	(Transmit	and	Receive)	pins,	for	the	serial	port,	117

type	conversions,	62,	62t	TypeError:	‘tuple’	object	does	not	support	item
assignment,	56

U
underscore	character	(_),	in	a	variable,	30
update	function,	for	a	particular	channel,	147
update_raspberry	function,	108,	109
update_spoon	function,	108
“updateRed”	method,	for	the	red	channel,	147
upper	string	function,	60t
USB
connector,	163
hub,	10–11,	10f	keyboard,	7
mouse,	7
port,	139
power	adapter,	11f	power	supply,	5,	6f	serial	connection,	140
sockets,	1,	3f,	4
Wi-Fi	adapter,	160
wireless	adapter,	9

USB	2,	11
USB-A-to-micro-USB	lead,	5,	6f	user	interface
building	controls	into	applications,	90
button	presses,	170
structure	of,	87,	88f	used	to	control	LED	hardware,	143,	144f	V

values
assigning,	30,	35,	41,	44,	57
associating	with	a	key,	55
logical,	36–37
returning	more	than	one,	57

variable	object,	creating	an	instance	of	a	special,	88
variables,	30–31
holding	a	list	of	numbers	or	strings,	43
naming,	30,	30t	saving	the	contents	of	to	a	file,	80

Velcro™	pads,	attaching	Raspberry	Pi	and	battery	box,	160,	162
VGA	connector,	in	a	monitor,	1
voltage

at	pin	23,	132f	rising	in	the	dark,	131

W
w	(write)	mode,	79
web	browser,	Raspberry	Pi	coming	with,	18
web	interface,	on	a	Pi,	168f
web	page,	controlling	the	rover	from,	167f
web	resources,	for	Python,	174
web	scraping,	82
web	server,	interacting	with,	81
web	server	code,	making	use	of	the	Bottle	library,	169
web	service	interface,	to	a	site,	83
“web	services	in	Python,”	83
web-controlled	rover,	166–171
website,	for	this	book,	33,	178
while	command,	38
while	loop,	checking	for	a	QUIT	event,	107–108
whole_word_guess	function,	52,	53
widgets,	90–97,	174
Wi-Fi,	support	for,	9,	10f	Wi-Fi	adapter,	6t,	10f	wildcard	(*),	specifying,	80
windowing	environment,	starting	automatically,	13
windows,	resizing,	93–94,	93f	wireless	networking,	4
wires
connecting	the	switch,	154
connecting	to	the	RRB3,	162,	163f	female-to-male	jumper,	120,	126,	144
jumper,	118,	127f,	150
male-to-male	jumper,	135

words,	selecting,	48
write	(w)	mode,	79
writeDigit	commands,	in	display_date,	157

X
XBMC	project,	Raspbmc	based	on,	177

	Title Page
	Copyright Page
	Dedication
	Contents at a Glance
	Contents
	Preface
	Acknowledgments
	Introduction
	1 Introduction
	What Is the Raspberry Pi?
	What Can You Do with a Raspberry Pi?
	A Tour of the Raspberry Pi
	Setting Up Your Raspberry Pi
	Buying What You Need
	Connecting Everything Together

	Booting Up
	Summary

	2 Getting Started
	Linux
	The Desktop
	The Internet
	The Command Line
	Navigating with the Terminal
	sudo

	Applications
	Internet Resources
	Summary

	3 Python Basics
	IDLE
	Python Versions
	Python Shell
	Editor

	Numbers
	Variables
	For Loops
	Simulating Dice
	If
	Comparisons
	Being Logical
	Else

	While
	Summary

	4 Strings, Lists, and Dictionaries
	String Theory
	Lists
	Functions
	Hangman
	Dictionaries
	Tuples
	Multiple Assignment
	Multiple Return Values

	Exceptions
	Summary of Functions
	Numbers
	Strings
	Lists
	Dictionaries
	Type Conversions

	Summary

	5 Modules, Classes, and Methods
	Modules
	Using Modules
	Useful Python Libraries

	Object Orientation
	Defining Classes
	Inheritance
	Summary

	6 Files and the Internet
	Files
	Reading Files
	Reading Big Files
	Writing Files
	The File System

	Pickling
	Internet
	Summary

	7 Graphical User Interfaces
	Tkinter
	Hello World
	Temperature Converter
	Other GUI Widgets
	Checkbutton
	Listbox
	Spinbox
	Layouts
	Scrollbar

	Dialogs
	Color Chooser
	File Chooser

	Menus
	The Canvas
	Summary

	8 Games Programming
	What Is Pygame?
	Coordinates
	Hello Pygame
	A Raspberry Game
	Following the Mouse
	One Raspberry
	Catch Detection and Scoring
	Timing
	Lots of Raspberries

	Summary

	9 Interfacing Hardware
	GPIO Pin Connections
	Pin Functions
	Serial Interface Pins
	Power Pins
	Hat Pins

	Breadboarding with Jumper Wires
	Digital Outputs
	Step 1. Put the Resistor on the Breadboard
	Step 2. Put the LED on the Breadboard
	Step 3. Connect the Breadboard to the GPIO Pins

	Analog Outputs
	Digital Inputs
	Analog Inputs
	Hardware
	The Software

	Breadboarding with the Pi Cobbler
	Prototyping Boards
	Perma-Proto
	Perma-Proto Pi HAT

	Other Boards and HATs
	Arduino and the Pi
	Arduino and Pi Talk

	Summary

	10 LED Fader Project
	What You Need
	Hardware Assembly
	Software
	Summary

	11 Prototyping Project (Clock)
	What You Need
	Hardware Assembly
	Software
	Phase Two
	Summary

	12 Raspberry Pi Robot
	What You Need
	Project 1. Autonomous Rover
	Hardware
	Software

	Project 2. Web-Controlled Rover
	Software

	Summary

	13 What Next
	Linux Resources
	Python Resources
	Raspberry Pi Resources
	Other Programming Languages
	Scratch
	C

	Applications and Projects
	Media Center (Raspbmc)
	Home Automation

	Summary

	Index

